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ABSTRACT noises, one needs to adapt the basis to the covariance properties of
the noise. Section 2 shows that thresholding estimators are quasi-
minimax optimal if the basis nearly diagonalizes the covariance of
the noise and if it concentrates the energy of the signal on a few
coefficients. As an application, we study in section 3 the decon-
volution of bounded variation signals, with an application to the

f deblurring of satellite images.

Inverting the distortion of signals and images in presence of addi-
tive noise is often numerically unstable. To solve these ill-posed
inverse problems, we study linear and non-linear diagonal estima-
tors in an orthogonal basis. General conditions are given to build
nearly minimax optimal estimators with a thresholding in an or-
thogonal basis. As an application, we study the deconvolution o
bounded variation signals, with numerical results on the deblurring

of satellite images. 2. MINIMAX ESTIMATION IN GAUSSIAN NOISE

1. INTRODUCTION We consider the generic inverse problem of equation (1), equi-
valent to the estimation of a signAlcontaminated by an additive
We consider a measurement device that degrades a igfial ~ Gaussian nois€ = U~'W:

size N with a linear operatot/ and adds a Gaussian white noise

W of variances?. The measured signal is therefore related to X=f+2Z.

the original signalf following :
The random vecto¥ is characterized by its covariance operator

Y=Uf+W, @ K, and we suppose tha{ Z[n]} = 0.

We suppose thdl’ ando? have been calculated through a calibra- The risk of an estimatiod” = DX is

tion procedure. Applying the inverdé~! to Y yields an equiva-

lent denoising problem r(D, f) =E{IDX - f|I"}.

X=U'YW=f+U'W=f+2 @) The expected risk over a s8tcannot be computed because we do
not know the probability distribution of signals i®. To control
The resulting noiseZ is not white but remains Gaussian because the risk for anyf € ©, we try to minimize the maximum risk:

U~ ! is linear. Its covariance operatéf is N
r(D,0) = sup E{IIDX — f[I"}.

K=5g’U"U", 3)
where A* is the adjoint of an operatod. When the inversé/ ! Let O, be the set of all linear and non-linear operators fiGfh
is not bounded, the resulting noige= U~ 'W is amplified bya  to CV. The minimax riskis the lower bound computed over all
factor that tends to infinity. Finding an estimafeof the signalf operatorsD:
is anill-posedinverse problem.
To build efficient estimators, we need to introduce some prior rn(0) = D'él(g r(D,©).

information on our signals. A Bayes estimator supposes that we

know t_he_ p_rior probability distriputiop of the signals to e_sti_mate In practice, we must find that is simple to implement and such
a;]nd mlnll(mlzeshthe a;)/e[)e_xlge ((ja_stlr_r;)atl_on e][ror. H?Wev_er’ Ilt IS rarr]e thatr(D, ©) is close to the minimax risk, (©). As a first step,
that we know the probability distribution of complex signals such s can simplify this problem by restricting to be a linear ope-

as natural images' The prior information o_ften Qefines aes_et_ rator. Let®; be the set of all linear operators frafY to CV . The
where the signals are guaranteed to remain, without specnfylng"near minimax riskover © is the lower bound:

their probability distribution ir®. Minimax estimation tries to mi-
nimize the maximum estimation error for all signaldnDonoho .
h - L r(©®) = inf r(D,0O)
and Johnstone have obtained general minimax optimality results DeO;
to estimate signals contaminated by white Gaussian noise with
thresholding estimators in orthogonal bases [DJ94]. To obtain si- We shall see when this strategy is efficient, i.e. whg®) is of
milar results when estimating signals contaminated by non white the same order as,(9).



2.1. Diagonal Estimation

When the additive noise is white, Donoho and Johnstone [DJ94
proved that non linear diagonal estimators in an orthonormal basis
B = {gm}o<m<n are nearly minimax optimal if the basis pro-
vides a sparse signal representation, which means that the basi
concentrates the energy of the signal on a few coefficients. When
the noise is not white, the coefficients of the noise have a variance

that depends upon eagh,:
o = E{|Z5[m]|’} = (Kgm, gm) -

The basis choice must therefore depend on the covariance
We study the risk of estimators that are diagonaBin

N-1

F=DX = dn(Xg[m]) gm - (4)

m=0

If din(XB[m]) = a[m] X[m], one can verify that the minimum
risk E{||F — f||*} is achieved by the following attenuation :

_ |fslm)?
] = el + o3, ©)
and
- . N-1 0.2 |f5[m]|2
E{IlF" — fII"} = rine(f) ng . (6)

Over a signal sed, the maximum risk of this attenuationig,¢(©) =
sup e Tint(f). The attenuation (5) is called amacle attenua-
tion because it uses information normally not availablegfas]
depends uponfs[m]| which is not known in practice. The risk

rinf(©) is thus only a lower bound for the minimax risk of diago-
nal estimators. We shall see that a simple thresholding estimator,

has a maximum risk that is closeitg.(©).
A thresholding estimator is defined by

N-1

F=DX=Y pr, (Xs[m)) gm ™)

m=0
wherepr,, (x) is for example a hard thresholding function

if |z| > T

me(””):{g it [« < T, ®

The risk of this thresholding estimator is

r(f) = (D, ) = 3 E{lfslm] - pro (Xslm)*}

m=0

Donoho and Johnstone studied thresholding estimators fihes
om /2log, N. If the signals belong to a sék, the threshold va-

lues are improved by considering the maximum of signal coeffi-

cientssg[m] = sup;cq |fs[m]|; if sslm] < o then setting
Xgp[m] to zero yields a riskfs[m]|® that is always smaller than
the risko2, of keeping it. This is done by choosif, = oo to
guarantee thair,, (Xs[m]) = 0. Thresholds are thus defined by

T _{ om~/2log, N if oy < s5[m] ©)
m T w .

if om > sB[m]

We shall study in which case thresholding estimators are close
0 minimax optimality, and compare them with linear estimators.
0 analyse the properties of linear and non-linear estimators, we
introduce orthosymmetric set® is orthosymmetrian B if for

gnyf € © and for anya[m] with |a[m]| < 1 then

N-1

S alm] fu[m] gm € ©.

m=0

This means that the sét is elongated along the directions of the
vectorsg,, of B. The “linear vs non-linear” diagonal estimation
issue depends on the size of the orthosymmetri®ses compared
to its quadratic convex hulldefined as following :

The “square” of a séd in the basig3 is defined by

N-1

©)5 ={f: f=>_ |fs[m]|’ g with f € ©}.

m=0

(10)

We say tha® is quadratically convein B if (©)% is a convex set.
The quadratic convex hulQH[BO] of © in the basis5 is defined

by

N-1
QH[O] = {f : > |fs[m]]” is in the convex hull 0’(6)2} .
m=0
(11)

It is the largest set whose squd@H[O])3 is equal to the convex
hull of (©)3.

2.2. Nearly Diagonal Covariance

Donocho and Johnstone [DJ94] obtained minimax estimation
results on non linear thresholding estimators when the additive
noise is white. To obtain similar results when the naisés not
white, we need to find a basi8 that transforms the noise into
“nearly” independent coefficients. This approach was studied by
Donoho for some specific deconvolution problems where wavelet
bases are adapted [Don95], which is not the casényperbolic
deconvolutiorsuch as deblurring in section 3. We give more gene-
ral conditions on the orthogonal ba#igo obtain nearly minimax
thresholding estimators [KM99].

Since the nois¢ is Gaussian, the coefficienfg [m] are nearly
independent is they are nearly uncorrelated, which means that its
covarianceK is nearly diagonal ir3. This approximate diagona-
lization is measured by preconditionidg with its diagonal. We
denote byK,; the diagonal operator in the bagiswhose diagonal
is equal to the diagonal dX'. The diagonal coefficients df and
K, are thuss?, = E{|Zs[m]|’}. Let K~ be the inverse of,
andK}’* be the diagonal matrix whose coefficients are Theo-
rem 1 computes lower and upper bounds of the minimax risks with
a conditioning factor defined with the operator sup ndrnis.

Theorem 1 The conditioning factor satisfies
As = ||K)P KT KLl > 1.
If © is orthosymmetric i3 then

Lt (QHIO)]) < 11(O) < rinr(QH[O)).

" 12)



and convolution. In the discrete Fourier basis, the oracle risk (6) is re-
written

rint(©) < 7 (©) < 14(0) < (2log, N + 1) (52 + rinf(@)) o

(13) - — U%N71|f[ff]|2 . 15
)= 2 N (19)

1.25 \p

One can verify that\g = 1 if and only if K = K, and is thus

diagonal inB. The closer\z is to 1 the more diagonaK'. The

main difficulty is to find a basi® which nearly diagonalizes the

covariance of the noise and provides sparse signal representation

so that® is orthosymmetric or can be embedded in two close or- Theorem 2 Let® be a translation invariant set. The minimax i-

thosymmetric sets. near risk for estimating from X = f + Z is reached by circular
If the basisB nearly diagonalize® so that\z is of the order convolutions and

of 1 thenr;(0©) is of the order of;,s(QH[O]), whereas, (©) and

r¢(©) are of the order ofi,:(O). If © is quadratically convex then 1(0) = rint(QH[O]) . (16)

© = QHJO] so the linear and non-linear minimax risks are close.

Otherwise its quadratic hulQH[®] may be much bigger tha®. ) )

When@ is strongly elongated i[n t]he directions of the basis vectors !f © is closed and bounded, then there exists QH[©] such that

gm, @ thresholding estimation i may significantly outperform  "int() = 7int(QH[O]). One can verify that the minimax linear
an optimal linear estimation. estimator isf" = DY =d ® Y, with

We denote by)H[O] the quadratic convex hull @ in the discrete
gourier basis.

3. DECONVOLUTION d[k] =

17

The restoration of signals degraded by a convolution operator .

U is a generic inverse problem that is often encountered in signallf o7 = o |i[k]|~2 <« N~ |&[k]|? thend[k] ~ @~ '[k], but if

processing. The convolution is supposed to be circular to avoid 7 > N~! |#[k]|? theng[k] ~ 0. The filterd is thus a regularized

border problems. The goal is to estimgtérom inverse ofuw.

Y=foutW. _ The total variation of a discrete signalof size NV is defined
with

The circular convolution is diagonal in the discrete Fourier basis

B = {gr[n]}o<r<n- Theinverse ot/ isU ' f = f®u~" where

the discrete Fourier transform af * is u—1[k] = 5T+ The de-

convolved data is

Ifllv = > 1f[n] = fln—1]]. (18)

. . The total variation measures the amplitude of all signal oscillations
X=UY=Y®u  =f+72 and is well suited to model the spatial inhomogeneity of piece-
wise regular signals. Bounded variation signals may include sharp

iseZ — U-'W is i i i i ORI -
The noiseZ = U™ "W is circular stationary. Its covariand transitions such as discontinuities. A € of bounded variation
is a circular convolution withv* ™" ® w~ ", whereuw “[n] = signals of periodV is defined by:

4~ [—n]. The Karhunen-Leve basis which diagonalizés is the-
refore the discrete Fourier bagss The eigenvalues ok areo; = N1
o |a[k]| 2. Whena[k] = 0 we formally setr? = oo. ‘ ‘
g Oy = : = - -1)|<C; .
When the convolution filter is a low-pass filter with a zero at v U ; fin] = fin =1l <
high frequency, the deconvolution problem is highly unstable. Sup-

pose that the discrete Fourier transfotifit] has a zero of order  thegrem 2 can be applied to the 8at which is indeed translation

p > 1 at the highest frequendy = +N/2 invariant [KM99].
N 2k P Theorem 3 For a hyperbolic deconvolution of degrgeif 1 <
k)~ |5 -1 COT e

The noise variance; has a hyperbolic growth when the frequency r(Ov) c (2p-1)/p

k is in the neighborhood of-N/2. This is called ahyperbolic No? <N1/2 U) (19)

deconvolutiorproblem of degree.

. . . 5 o
3.1. Linear Deconvolution For a constant signal to noise ratif /(N ¢2) ~ 1, (19) implies

that
In many deconvolution problems the $#fs translation inva-
riant, which means that if € © then any translation df modulo ri(Ov) ~1 (20)
N also belongs t®. Since the amplified noisg is circular sta- No?2 )

tionary the whole estimation problem is translation invariant. In
this case, the linear estimator that achieves the minimax linear riskDespite the fact that decreases an¥ increases the normalized
is diagonal in the discrete Fourier basis. It is therefore a circular linear minimax risk remains of the order of



3.2. Thresholding Deconvolution Theorem 4 LetB a mirror wavelet basis constructed with a conju-
gate mirror filter that defines a wavelet that &7 with ¢ vani-
shing moments. For a hyperbolic deconvolution of degree ¢,

if 1 < C/o < NPT3 then

An efficient thresholding estimator is implemented in a b&sis
which defines a sparse representation of signat3:inand which
nearly diagonalize& . The covariance operatdf is diagonalized
in the discrete Fourier basis and its eigenvalues are

Tn(@V) Tt(ev) (g>4p/(2p+l) M

-2 No® No? o N

2
2 a 2
O =5 ~O0

|alk][*

2k _
N

The discrete Fourier basis is not appropriate for the thresholding This theorem proves that a thresholding estimator in a mirror wa-
algorithm because it does not approximate efficiently bounded va- velet basis yields a quasi-minimax deconvolution estimator for boun-
riation signals. Periodic wavelet bases provide efficient approxi- ded variation signals. If we suppose that the signal to noise ratio
mations of bounded variation signals, but a wavelet basis fails to C*/(No?) ~ 1 then

approximatively diagonalizé(. The discrete Fourier transforms

of these wavelets have an energy mostly concentrated on dyadic ra(Ov)  r(Ov) log, N 1/zp ) 23
intervals, as illustrated by Figure 1. On all scales but the finest, No®  No® N ) (23)
(21) shows that the eigenvalue$ remain of the order ob>.

These wavelets are therefore approximate eigenvectofs. gt As opposed to the normalized linear minimax risk (20) which re-

the finest scale, the wavelets have an energy mainly concentratednains of the order of, the thresholding risk in a mirror wavelet
in the higher frequency banidV/4, N/2], wheres?} varies by a basis converges to zer(_)afsmcreases. The larger the numb)e;yf
huge factor of the order aV>". To construct a basis of approxi-  z€ros of the low-pass filtet[k] atk = +N/2 the slower the risk
mate eigenvectors dt, the finest scale wavelets must be replaced decay.

by vectors that have a Fourier transform concentrated in subinter-

vals of[N/4, N/2] whereo} varies by a factor that does not grow  3.3. Deconvolution of Satellite Images

with N. We replace the finest scale wavelets by wavelet packets
[Wic94] whose discrete Fourier transform support decrease expo- X - .
nentially at high frequencies, while keeping a small spatial support b_e calcm_JIated _W'th a separable_extensmn of the d_econvolu_tlon es-
(and hence the largest possible frequency support) to eﬁicientlyt'mator in a mirror wavelgt basis. Such a restoration algorlt_hm is
approximate piecewise regular signals. The optimal tradeoff is ob- US€d by the French Spatial Agency (CNES) for the production of
tained by particular wavelet packets illustrated in figure 1, called satelllte_ images. The satellite movement and the |mperf_ect|0n .Of
mirror waveletsbecause of their frequency distribution symmetric thg optics produces a plur, to which is added a Ga‘%ss"’!” white
with respect to wavelets. More details can be found in [KM99]. noise due to the electronic of the photoreceptors. A calibration pro-

To prove that the covariandg is “almost diagonalized” ifB for cedure measures the impulse respon®é the blur and the noise
variances. The image 2(b) is a simulated satellite image provided

by the CNES, which is calculated from an airplane image shown
in Figure 2(a). The impulse response is a separable low-pass filter

Nearly optimal deconvolution of bounded variation images can

Uflni,n2] = f ® u[ni, na] with u[ni, na] = ui[ni] uz[ns] .
The discrete Fourier transform af andus have respectively a
52 zero of ordep; andp, at+N/2
k
. 2k' P1 R Zk P2
) ul[kl]N‘Wl—l andUQ[k,‘z]N Wz—l
2l
Wjﬁ >< K x Most satellite images are well modeled by bounded variation
L K images. For a square discrete image\f pixels, the total varia-
0 N/4 N/2 tion is defined by
FiG. 1 — Frequency decomposition induced by a mirror wavelet NNl 2
basis. The variance? of the noise has a hyperbolic growth but  [Ifllv = + >N (‘f["la"Z] = flr1 = Lmo]| +
varies by a bounded factor on the frequency support of each mirror n1=0n2=0

wavelet.

=

[#lm ] =l ma = 1))

all N, the asymptotic behavior of the discrete wavelets and mir- We say that an image has a bounded variatidjff- is bounded

ror wavelets must be controlled. The following theorem thus sup- by a constant independent of the resolutiénLet Oy be the set
poses that these wavelets and wavelet packets are constructed withf images that have a total variation boundedby

a conjugate mirror filter which yields a continuous time wavelet

that hasy > p vanishing moments and which@?. The near dia- Oy = {f v < C} .

gonalization is verified to prove that a thresholding estimator in a

mirror wavelet basis has a risk whose decay is equivalent to theBounded variation plays an important role in image processing,
non-linear minimax risk. where its value depends on the length of the image level sets.



The deconvolved noise has a covariaficéhat is diagonalized
in a two-dimensional discrete Fourier basis. The eigenvalues are

2 —2p1 —2p2
2 _ a 2
Oky,ky = ~a

[G1[k1]]2 |2 [k2] 2

2%
N

%,

(24)

The main difficulty is again to find an orthonormal basis which
provides a sparse representation of bounded variation images and
which nearly diagonalizes the noise covariarie Each vector i
of such a basis should have a Fourier transform whose energy is &
concentrated in a frequency domain where the eigenveefors,
vary at most by a constant factor. Regou97] has demonstrated
numerically that efficient deconvolution estimations can be perfor- (a) (b)
med with a thresholding in a wavelet packet basis. This algorithm
is inspired by his approach although the chosen basis is different.

At low frequencies(ki, k2) € [0, N/4]? the eigenvalues re-
main approximatively constamfl,,c2 ~ o2. This frequency square
can be covered with a separable discrete wavelet basis. The remai-
ning high frequency annulus is covered by two-dimensional mirror gy
wavelets that are separable products of two one-dimensional mir-
ror wavelets. One can verify that the union of these two families
define an orthonormal basis of imagesf pixels. This two-
dimensional mirror wavelet basis is an anisotropic wavelet packet
basis, in which decomposing a signal with a filter bank requires
O(N?) operations [Wic94]. One can prove that there exisssich
that||K)/> K~' K)/?||s < A.

A thresholding estimator i#8 has a risk; () close to the
non-linear minimax risk,, (©y) and that converges to zero s © (@)
increases, whereas a linear minimax estimator does not reduce the

2 . 5 5
original noise energyv-o" by more thgn a constant._ FIG. 2 —(a): Original airplane image. (b): Simulation of a satellite
Theorem S For a separgbIeQ hype2rb(2)I|c deconvolution of degree jmage (SNR = 31.1db). (c): Deconvolution with a thresholding in a
p = max(py,p2) > 3/2,if C°/(N”07) ~ 1 then mirror wavelet basis (34.1db). (d): Nearly minimax optimal linear

4 deconvolution calculated with a circular convolution (32.7db).
rn(Ov)  1(Ov) (loge N) 2p+1

N2

r(Oy)
N2g2 ~1 and N2o2  N2g2

Figure 2(c) shows an example of deconvolution calculated in the coefficients of the decomposition yields previously unobtai-
the mirror wavelet basis. This can be compared with the linear ned minimax optimality results. A competition set by the French
estimation in Figure 2(d), calculated with a circular convolution spatial agency showed that this type of algorithms gives the best
estimator whose maximum risk over bounded variation images is numerical results among all competing algorithms.
close to the minimax linear risk. The linear deconvolution shar-
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