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ABSTRACT

Inverting the distortion of signals and images in presence of addi-
tive noise is often numerically unstable. To solve these ill-posed
inverse problems, we study linear and non-linear diagonal estima-
tors in an orthogonal basis. General conditions are given to build
nearly minimax optimal estimators with a thresholding in an or-
thogonal basis. As an application, we study the deconvolution of
bounded variation signals, with numerical results on the deblurring
of satellite images.

1. INTRODUCTION

We consider a measurement device that degrades a signalf of
sizeN with a linear operatorU and adds a Gaussian white noise
W of variance�2. The measured signalY is therefore related to
the original signalf following :

Y = Uf +W ; (1)

We suppose thatU and�2 have been calculated through a calibra-
tion procedure. Applying the inverseU�1 to Y yields an equiva-
lent denoising problem

X = U�1Y = f + U�1W = f + Z: (2)

The resulting noiseZ is not white but remains Gaussian because
U�1 is linear. Its covariance operatorK is

K = �2 U�1;� U�1 ; (3)

whereA� is the adjoint of an operatorA. When the inverseU�1

is not bounded, the resulting noiseZ = U�1W is amplified by a
factor that tends to infinity. Finding an estimate~F of the signalf
is anill-posedinverse problem.

To build efficient estimators, we need to introduce some prior
information on our signals. A Bayes estimator supposes that we
know the prior probability distribution of the signals to estimate
and minimizes the average estimation error. However, it is rare
that we know the probability distribution of complex signals such
as natural images. The prior information often defines a set�
where the signals are guaranteed to remain, without specifying
their probability distribution in�. Minimax estimation tries to mi-
nimize the maximum estimation error for all signals in�. Donoho
and Johnstone have obtained general minimax optimality results
to estimate signals contaminated by white Gaussian noise with
thresholding estimators in orthogonal bases [DJ94]. To obtain si-
milar results when estimating signals contaminated by non white

noises, one needs to adapt the basis to the covariance properties of
the noise. Section 2 shows that thresholding estimators are quasi-
minimax optimal if the basis nearly diagonalizes the covariance of
the noise and if it concentrates the energy of the signal on a few
coefficients. As an application, we study in section 3 the decon-
volution of bounded variation signals, with an application to the
deblurring of satellite images.

2. MINIMAX ESTIMATION IN GAUSSIAN NOISE

We consider the generic inverse problem of equation (1), equi-
valent to the estimation of a signalf contaminated by an additive
Gaussian noiseZ = U�1W :

X = f + Z :

The random vectorZ is characterized by its covariance operator
K, and we suppose thatEfZ[n]g = 0.

The risk of an estimation~F = DX is

r(D; f) = EfkDX � fk2g:

The expected risk over a set� cannot be computed because we do
not know the probability distribution of signals in�. To control
the risk for anyf 2 �, we try to minimize the maximum risk:

r(D;�) = sup
f2�

EfkDX � fk2g:

LetOn be the set of all linear and non-linear operators fromC
N

to C
N . The minimax riskis the lower bound computed over all

operatorsD:

rn(�) = inf
D2On

r(D;�):

In practice, we must findD that is simple to implement and such
that r(D;�) is close to the minimax riskrn(�). As a first step,
one can simplify this problem by restrictingD to be a linear ope-
rator. LetOl be the set of all linear operators fromCN to C

N . The
linear minimax riskover� is the lower bound:

rl(�) = inf
D2Ol

r(D;�)

We shall see when this strategy is efficient, i.e. whenrl(�) is of
the same order asrn(�).



2.1. Diagonal Estimation

When the additive noise is white, Donoho and Johnstone [DJ94]
proved that non linear diagonal estimators in an orthonormal basis
B = fgmg0�m<N are nearly minimax optimal if the basis pro-
vides a sparse signal representation, which means that the basis
concentrates the energy of the signal on a few coefficients. When
the noise is not white, the coefficients of the noise have a variance
that depends upon eachgm:

�2m = EfjZB[m]j2g = hKgm; gmi :

The basis choice must therefore depend on the covarianceK.
We study the risk of estimators that are diagonal inB:

~F = DX =

N�1X
m=0

dm(XB[m]) gm : (4)

If dm(XB[m]) = a[m]XB[m], one can verify that the minimum
risk Efk ~F � fk2g is achieved by the following attenuation :

a[m] =
jfB[m]j2

jfB[m]j2 + �2m
; (5)

and

Efk ~F � fk2g = rinf(f) =
N�1X
m=0

�2m jfB[m]j2

�2m + jfB[m]j2
: (6)

Over a signal set�, the maximum risk of this attenuation isrinf(�) =
supf2� rinf(f). The attenuation (5) is called anoracle attenua-
tion because it uses information normally not available, asa[m]
depends uponjfB[m]j which is not known in practice. The risk
rinf(�) is thus only a lower bound for the minimax risk of diago-
nal estimators. We shall see that a simple thresholding estimator
has a maximum risk that is close torinf(�).

A thresholding estimator is defined by

~F = DX =
N�1X
m=0

�Tm(XB[m]) gm ; (7)

where�Tm(x) is for example a hard thresholding function

�Tm(x) =

�
x if jxj > Tm
0 if jxj � Tm

; (8)

The risk of this thresholding estimator is

rt(f) = r(D; f) =

N�1X
m=0

EfjfB[m]� �Tm(XB[m])j2g :

Donoho and Johnstone studied thresholding estimators whenTm =
�m
p
2 logeN . If the signals belong to a set�, the threshold va-

lues are improved by considering the maximum of signal coeffi-
cientssB[m] = supf2� jfB[m]j; if sB[m] � �m then setting
XB[m] to zero yields a riskjfB[m]j2 that is always smaller than
the risk�2m of keeping it. This is done by choosingTm = 1 to
guarantee that�Tm(XB[m]) = 0. Thresholds are thus defined by

Tm =

�
�m
p
2 logeN if �m < sB[m]

1 if �m � sB[m]
: (9)

We shall study in which case thresholding estimators are close
to minimax optimality, and compare them with linear estimators.
To analyse the properties of linear and non-linear estimators, we
introduce orthosymmetric sets.� is orthosymmetricin B if for
anyf 2 � and for anya[m] with ja[m]j � 1 then

N�1X
m=0

a[m] fB[m] gm 2 � :

This means that the set� is elongated along the directions of the
vectorsgm of B. The “linear vs non-linear” diagonal estimation
issue depends on the size of the orthosymmetric set� as compared
to its quadratic convex hull, defined as following :

The “square” of a set� in the basisB is defined by

(�)2B = f ~f : ~f =

N�1X
m=0

jfB[m]j2 gm with f 2 �g : (10)

We say that� is quadratically convexin B if (�)2B is a convex set.
The quadratic convex hullQH[�] of � in the basisB is defined
by

QH[�] =
n
f :

N�1X
m=0

jfB[m]j2 is in the convex hull of(�)2B

o
:

(11)

It is the largest set whose square(QH[�])2B is equal to the convex
hull of (�)2B.

2.2. Nearly Diagonal Covariance

Donoho and Johnstone [DJ94] obtained minimax estimation
results on non linear thresholding estimators when the additive
noise is white. To obtain similar results when the noiseZ is not
white, we need to find a basisB that transforms the noise into
“nearly” independent coefficients. This approach was studied by
Donoho for some specific deconvolution problems where wavelet
bases are adapted [Don95], which is not the case forhyperbolic
deconvolutionsuch as deblurring in section 3. We give more gene-
ral conditions on the orthogonal basisB to obtain nearly minimax
thresholding estimators [KM99].

Since the noiseZ is Gaussian, the coefficientsZB[m] are nearly
independent is they are nearly uncorrelated, which means that its
covarianceK is nearly diagonal inB. This approximate diagona-
lization is measured by preconditioningK with its diagonal. We
denote byKd the diagonal operator in the basisB, whose diagonal
is equal to the diagonal ofK. The diagonal coefficients ofK and
Kd are thus�2m = EfjZB[m]j2g. LetK�1 be the inverse ofK,
andK1=2

d be the diagonal matrix whose coefficients are�m. Theo-
rem 1 computes lower and upper bounds of the minimax risks with
a conditioning factor defined with the operator sup normk : kS .

Theorem 1 The conditioning factor satisfies

�B = kK
1=2
d K�1K

1=2
d kS � 1:

If � is orthosymmetric inB then

1

�B
rinf(QH[�]) � rl(�) � rinf(QH[�]): (12)



and

1

1:25 �B
rinf(�) � rn(�) � rt(�) � (2 logeN + 1)

�
��2 + rinf(�)

�
:

(13)

One can verify that�B = 1 if and only if K = Kd and is thus
diagonal inB. The closer�B is to 1 the more diagonalK. The
main difficulty is to find a basisB which nearly diagonalizes the
covariance of the noise and provides sparse signal representations
so that� is orthosymmetric or can be embedded in two close or-
thosymmetric sets.

If the basisB nearly diagonalizesK so that�B is of the order
of 1 thenrl(�) is of the order ofrinf(QH[�]), whereasrn(�) and
rt(�) are of the order ofrinf(�). If � is quadratically convex then
� = QH[�] so the linear and non-linear minimax risks are close.
Otherwise its quadratic hullQH[�] may be much bigger than�.
When� is strongly elongated in the directions of the basis vectors
gm, a thresholding estimation inB may significantly outperform
an optimal linear estimation.

3. DECONVOLUTION

The restoration of signals degraded by a convolution operator
U is a generic inverse problem that is often encountered in signal
processing. The convolution is supposed to be circular to avoid
border problems. The goal is to estimatef from

Y = f ~ u+W :

The circular convolution is diagonal in the discrete Fourier basis
B = fgk[n]g0�k<N . The inverse ofU isU�1f = f~u�1 where

the discrete Fourier transform ofu�1 is du�1[k] = 1
bu[k]

. The de-
convolved data is

X = U�1Y = Y ~ u�1 = f + Z:

The noiseZ = U�1W is circular stationary. Its covarianceK
is a circular convolution with�2 u�1

~ u�1, whereu�1[n] =
u�1[�n]. The Karhunen-Lo`eve basis which diagonalizesK is the-
refore the discrete Fourier basisB. The eigenvalues ofK are�2k =
�2 jû[k]j�2. Whenû[k] = 0 we formally set�2k =1.

When the convolution filter is a low-pass filter with a zero at
high frequency, the deconvolution problem is highly unstable. Sup-
pose that the discrete Fourier transform̂u[k] has a zero of order
p � 1 at the highest frequencyk = �N=2

jû[k]j �

����2kN � 1

����p : (14)

The noise variance�2k has a hyperbolic growth when the frequency
k is in the neighborhood of�N=2. This is called ahyperbolic
deconvolutionproblem of degreep.

3.1. Linear Deconvolution

In many deconvolution problems the set� is translation inva-
riant, which means that ifb 2 � then any translation ofb modulo
N also belongs to�. Since the amplified noiseZ is circular sta-
tionary the whole estimation problem is translation invariant. In
this case, the linear estimator that achieves the minimax linear risk
is diagonal in the discrete Fourier basis. It is therefore a circular

convolution. In the discrete Fourier basis, the oracle risk (6) is re-
written

rinf(f) =

N�1X
k=0

�2kN
�1 jf̂ [k]j2

�2k +N�1 jf̂ [k]j2
: (15)

We denote byQH[�] the quadratic convex hull of� in the discrete
Fourier basis.

Theorem 2 Let� be a translation invariant set. The minimax li-
near risk for estimatingf fromX = f +Z is reached by circular
convolutions and

rl(�) = rinf(QH[�]) : (16)

If � is closed and bounded, then there existsx 2 QH[�] such that
rinf(x) = rinf(QH[�]). One can verify that the minimax linear
estimator is~F = DY = d~ Y , with

d̂[k] =
N�1 jx̂[k]j2 û�[k]

�2 +N�1 jx̂[k]j2 jû[k]j2
: (17)

If �2k = �2 jû[k]j�2 � N�1 jx̂[k]j2 then d̂[k] � û�1[k], but if
�2k � N�1 jx̂[k]j2 thend̂[k] � 0. The filterd is thus a regularized
inverse ofu.

The total variation of a discrete signalf of sizeN is defined
with

kfkV =

N�1X
n=0

jf [n] � f [n� 1]j : (18)

The total variation measures the amplitude of all signal oscillations
and is well suited to model the spatial inhomogeneity of piece-
wise regular signals. Bounded variation signals may include sharp
transitions such as discontinuities. A set�V of bounded variation
signals of periodN is defined by:

�V =

(
f : kfkV =

N�1X
n=0

���f [n]� f [n� 1]
��� � C

)
:

Theorem 2 can be applied to the set�V which is indeed translation
invariant [KM99].

Theorem 3 For a hyperbolic deconvolution of degreep, if 1 �
C=� � N then

rl(�V )

N�2
�

�
C

N1=2 �

�(2p�1)=p

: (19)

For a constant signal to noise ratioC2=(N �2) � 1, (19) implies
that

rl(�V )

N�2
� 1 : (20)

Despite the fact that� decreases andN increases the normalized
linear minimax risk remains of the order of1.



3.2. Thresholding Deconvolution

An efficient thresholding estimator is implemented in a basisB
which defines a sparse representation of signals in�V and which
nearly diagonalizesK. The covariance operatorK is diagonalized
in the discrete Fourier basis and its eigenvalues are

�2k =
�2

jû[k]j2
� �2

����2kN � 1

�����2p

: (21)

The discrete Fourier basis is not appropriate for the thresholding
algorithm because it does not approximate efficiently bounded va-
riation signals. Periodic wavelet bases provide efficient approxi-
mations of bounded variation signals, but a wavelet basis fails to
approximatively diagonalizeK. The discrete Fourier transforms
of these wavelets have an energy mostly concentrated on dyadic
intervals, as illustrated by Figure 1. On all scales but the finest,
(21) shows that the eigenvalues�2k remain of the order of�2.
These wavelets are therefore approximate eigenvectors ofK. At
the finest scale, the wavelets have an energy mainly concentrated
in the higher frequency band[N=4; N=2], where�2k varies by a
huge factor of the order ofN2r . To construct a basis of approxi-
mate eigenvectors ofK, the finest scale wavelets must be replaced
by vectors that have a Fourier transform concentrated in subinter-
vals of[N=4; N=2] where�2k varies by a factor that does not grow
with N . We replace the finest scale wavelets by wavelet packets
[Wic94] whose discrete Fourier transform support decrease expo-
nentially at high frequencies, while keeping a small spatial support
(and hence the largest possible frequency support) to efficiently
approximate piecewise regular signals. The optimal tradeoff is ob-
tained by particular wavelet packets illustrated in figure 1, called
mirror waveletsbecause of their frequency distribution symmetric
with respect to wavelets. More details can be found in [KM99].
To prove that the covarianceK is “almost diagonalized” inB for

0 N/2

k

N/4

σ

σ2

k
2

FIG. 1 – Frequency decomposition induced by a mirror wavelet
basis. The variance�2k of the noise has a hyperbolic growth but
varies by a bounded factor on the frequency support of each mirror
wavelet.

all N , the asymptotic behavior of the discrete wavelets and mir-
ror wavelets must be controlled. The following theorem thus sup-
poses that these wavelets and wavelet packets are constructed with
a conjugate mirror filter which yields a continuous time wavelet
that hasq > p vanishing moments and which isCq. The near dia-
gonalization is verified to prove that a thresholding estimator in a
mirror wavelet basis has a risk whose decay is equivalent to the
non-linear minimax risk.

Theorem 4 LetB a mirror wavelet basis constructed with a conju-
gate mirror filter that defines a wavelet that isCq with q vani-
shing moments. For a hyperbolic deconvolution of degreep < q,
if 1 � C=� � Np+ 1

2 then

rn(�V )

N�2
�
rt(�V )

N�2
�

�
C

�

�4p=(2p+1)
(logeN)1=(2p+1)

N
:

(22)

This theorem proves that a thresholding estimator in a mirror wa-
velet basis yields a quasi-minimax deconvolution estimator for boun-
ded variation signals. If we suppose that the signal to noise ratio
C2=(N�2) � 1 then

rn(�V )

N�2
�
rt(�V )

N�2
�

�
logeN

N

�1=(2p+1)

: (23)

As opposed to the normalized linear minimax risk (20) which re-
mains of the order of1, the thresholding risk in a mirror wavelet
basis converges to zero asN increases. The larger the numberp of
zeros of the low-pass filter̂u[k] at k = �N=2 the slower the risk
decay.

3.3. Deconvolution of Satellite Images

Nearly optimal deconvolution of bounded variation images can
be calculated with a separable extension of the deconvolution es-
timator in a mirror wavelet basis. Such a restoration algorithm is
used by the French Spatial Agency (CNES) for the production of
satellite images. The satellite movement and the imperfection of
the optics produces a blur, to which is added a Gaussian white
noise due to the electronic of the photoreceptors. A calibration pro-
cedure measures the impulse responseu of the blur and the noise
variance�2. The image 2(b) is a simulated satellite image provided
by the CNES, which is calculated from an airplane image shown
in Figure 2(a). The impulse response is a separable low-pass filter

Uf [n1; n2] = f ~ u[n1; n2] with u[n1; n2] = u1[n1]u2[n2] :

The discrete Fourier transform ofu1 andu2 have respectively a
zero of orderp1 andp2 at�N=2

û1[k1] �

����2k1N � 1

����p1 and û2[k2] �

����2k2N � 1

����p2 :

Most satellite images are well modeled by bounded variation
images. For a square discrete image ofN2 pixels, the total varia-
tion is defined by

kfkV =
1

N

N�1X
n1=0

N�1X
n2=0

����f [n1; n2]� f [n1 � 1; n2]
���2 +

���f [n1; n2]� f [n1; n2 � 1]
���2� 12 :

We say that an image has a bounded variation ifkfkV is bounded
by a constant independent of the resolutionN . Let�V be the set
of images that have a total variation bounded byC

�V =
n
f : kfkV � C

o
:

Bounded variation plays an important role in image processing,
where its value depends on the length of the image level sets.



The deconvolved noise has a covarianceK that is diagonalized
in a two-dimensional discrete Fourier basis. The eigenvalues are

�2k1;k2 =
�2

jû1[k1]j2 jû2[k2]j2
� �2

����2k1N � 1

�����2p1
����2k2N � 1

�����2p2

:

(24)

The main difficulty is again to find an orthonormal basis which
provides a sparse representation of bounded variation images and
which nearly diagonalizes the noise covarianceK. Each vector
of such a basis should have a Fourier transform whose energy is
concentrated in a frequency domain where the eigenvectors�2k1;k2
vary at most by a constant factor. Roug´e [Rou97] has demonstrated
numerically that efficient deconvolution estimations can be perfor-
med with a thresholding in a wavelet packet basis. This algorithm
is inspired by his approach although the chosen basis is different.

At low frequencies(k1; k2) 2 [0; N=4]2 the eigenvalues re-
main approximatively constant�2k1;k2 � �2. This frequency square
can be covered with a separable discrete wavelet basis. The remai-
ning high frequency annulus is covered by two-dimensional mirror
wavelets that are separable products of two one-dimensional mir-
ror wavelets. One can verify that the union of these two families
define an orthonormal basis of images ofN2 pixels. This two-
dimensional mirror wavelet basis is an anisotropic wavelet packet
basis, in which decomposing a signal with a filter bank requires
O(N2) operations [Wic94]. One can prove that there exists� such
thatkK1=2

d K�1K
1=2
d kS � �.

A thresholding estimator inB has a riskrt(�V ) close to the
non-linear minimax riskrn(�V ) and that converges to zero asN
increases, whereas a linear minimax estimator does not reduce the
original noise energyN2�2 by more than a constant.
Theorem 5 For a separable hyperbolic deconvolution of degree
p = max(p1; p2) � 3=2, if C2=(N2 �2) � 1 then

rl(�V )

N2�2
� 1 and

rn(�V )

N2�2
�
rt(�V )

N2�2
�

�
logeN

N2

� 1
2p+1

:

Figure 2(c) shows an example of deconvolution calculated in
the mirror wavelet basis. This can be compared with the linear
estimation in Figure 2(d), calculated with a circular convolution
estimator whose maximum risk over bounded variation images is
close to the minimax linear risk. The linear deconvolution shar-
pens the image but leaves a visible noise in the regular parts of the
image. The thresholding algorithm removes completely the noise
in these regions while improving the restoration of edges and os-
cillatory parts. This algorithm was chosen among several compe-
ting algorithms by photointerpreters of the French spatial agency
(CNES) to perform the deconvolution of satellite images, and it is
now integrated in the CNES satellite image acquisition channel.

4. CONCLUSION

We have built a theoretical framework for minimax optimal
restoration of signals and images in the case of ill-posed inverse
problems. One can perform an optimal restoration if one can find
an orthogonal basis which can both compress the signal to estimate
on a few coefficients and nearly diagonalize the covariance of the
non-white Gaussian noise obtained after applying the inverse of
the degradation operator. The use of this approach to solve hyper-
bolic deconvolution of signals and images leads to the creation of
mirror wavelet bases in which a simple thresholding procedure on

(a) (b)

(c) (d)

FIG. 2 –(a): Original airplane image. (b): Simulation of a satellite
image (SNR = 31.1db). (c): Deconvolution with a thresholding in a
mirror wavelet basis (34.1db). (d): Nearly minimax optimal linear
deconvolution calculated with a circular convolution (32.7db).

the coefficients of the decomposition yields previously unobtai-
ned minimax optimality results. A competition set by the French
spatial agency showed that this type of algorithms gives the best
numerical results among all competing algorithms.
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