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ABSTRACT
In this paper, a new formulation for discriminative training of
HMMs is presented. This formulation uses a properly trained
MLP in a simple interconnection with HMMs called “Cascade
HMM/ANN Hybrid”. Our training algorithm has simple
realization in comparison with other discriminative training for
HMMs such as MDI and MMI. We also present a rigid
mathematical proof of its convergence. We found that using
cascade HMM/ANN for isolated word recognition in noisy
environment results in increasing the recognition accuracy from
93.3% in classic HMMs to 99.1% using a two layer MLP. No
significant increase in computational requirements is needed in
recognition phase. Both theoretical and experimental
achievements are included in the paper.

1. INTRODUCTION
In spite of the fact that speech exhibits features that can not be
represented by a first order Markov models, Hidden Markov
Models (HMMs) of speech units (e.g. words or phonemes) have
been used with a good degree of success in Automatic Speech
Recognition (ASR)[1],[4]. On the other hand, Artificial Neural
Networks (ANNs) and in particular Multi Layer Perceptrons
(MLPs) trained with Back Propagation (BP), have proven to be
useful for nonlinear classification of speech properties of limited
duration[2]. Various attempts have been made to interpret time
evolution of ANN outputs and discriminative training of
HMMs[3]. Bourlard and Morgan used an MLP with large
number of hidden layer nodes to estimate HMM state
probabilities[5],[6]. Kershaw et al. reported similar results by
using recurrent neural networks in place of MLP[7]. Rigoll      et
al.  introduced another combination of MLP and discrete density
HMMs. In this combination MLP performs the vector
quantization task[8],[9]. All of these researchers reported
significant improvement over classic HMM-based speech
recognizers. In this paper, we outline a new formulation for
discriminative training of  HMMs using properly trained MLP in
a new hybrid combination named as “Cascade HMM/ANN”. In
this combination MLP is placed in a cascade interconnection
with HMMs and performs a nonlinear classification of HMMs
scores. We found (both theoretically and experimentally) that
this cascade interconnection inherits both time domain modeling
capability of HMM and discriminative property of MLP which
results in a significant improvement in recognition accuracy. In
classic HMM architecture for isolated word recognition, each
word HMM is trained separately using Maximum Likelihood
(ML) approach of Baum-Welch recursion. In such a system, the

word HMM with maximum score for the input utterance
determines the recognition result regardless of other word HMM
scores. This gave us a strong clue to use all HMM scores in an
MLP nonlinear classifier to recognize any input utterance. First,
HMM parameters are estimated using Baum-Welch recursion as
an initial point of our training scheme. Then an MLP with equal
number of  input and output layer nodes, and properly selected
number of hidden layer nodes (about 10 times of  input layer
nodes) is used for classification of the normalized HMM scores.
The MLP is trained using BP procedure with the same training
set used in Baum-Welch recursion. After this phase, we update
the initial estimates of output probability density of each HMM
state using another training set keeping the MLP weights and
HMM state transition probabilities fixed. Several experiments
prove that output probability densities are much more important
in recognition rate than state transition probabilities[4],[5]. We
use a new formulation for passing gradient of back propagation
procedure from MLP outputs to the HMM scores and then to the
output probability density of each HMM state. In other words,
the gradient of MLP outputs with respect to each output
probability density of HMM state is computed and used for
updating these probability densities using “Steepest Descent”
algorithm. We showed that this gradient computation can be
performed efficiently using forward and backward HMM
variables. We also proved that the convergence of this  updating
scheme to a local maximum is guaranteed. In the realization
phase, we use the cascade HMM/ANN hybrid in an isolated
word recognition task as a performance test. After all training
phases, our new structure recognized the test utterances much
better than classically trained HMMs (about 6% increase in
recognition accuracy). This paper is organized as follows. In
Section 2 we describe cascade HMM/ANN structure and its
training phases. In Section 3 convergence of training algorithms
is discussed. Experimental evaluation of our algorithms is also
included in this section. Finally we summarize our major
findings and experimental results.

2. CASCADE HMM/ANN HYBRID AND
DISCRIMINATIVE TRAINING

In this section  we assume that for each unit to be recognized
(e.g. word or phone) a unique left-right HMM is assigned. As
stated earlier, scores of these HMMs for any isolated input
utterance is used as inputs to an MLP. Figure 1 shows this
structure with  K  HMMs  and a two layer MLP. This structure is
very similar to the classic structure of HMM-based isolated word
recognition and can be used directly for  isolated word



recognition. But for phoneme-based continuous speech
recognition tasks a presegmentation algorithm must be used to
convert the problem to an isolated utterance task. In the
following subsections we present the mathematical basis of our
training algorithm.
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Figure 1. The Cascade HMM/ANN Hybrid.

2.1. Training Procedure

Our proposed training procedure for cascade HMM/ANN Hybrid
can be performed in three phases. In the first phase, each HMM
is trained separately with several samples of its related units
using Baum-Welch Recursion. This phase is completely similar
to the training phase of  HMMs in classic isolated word
recognizer. In the second phase, all of the training  utterances,
used in the first phase are applied to all trained HMMs. Scores of
these HMMs are used to train a two layer  MLP with  properly
selected number  of  hidden layer nodes. This MLP has equal
number of inputs and outputs, as depicted in Figure 2, and is
trained using BP procedure. The trained MLP then is capable of
classifying the HMM scores. The third phase is responsible for
fine tuning HMM parameters using steepest descent algorithm.
For this purpose gradient of MLP outputs with respect to HMM
parameters must be computed. We assumed that only state
probability densities of HMMs are important for fine tuning.  As
stated earlier, state transition probabilities are not as important as
state probability densities. So our training scheme updates only
the state probability densities and the state transition probabilities
remained unchanged. The MLP weights are also kept fixed in
this training phase. We divide the gradient computation
procedure into two parts. First, the gradient of HMM scores with
respect to state probability densities is computed and then BP

gradients and chain rule are used to calculate desired gradients.
These steps are fully described in next subsections.
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Figure 2. Appropriate MLP structure in cascade
HMM/ANN hybrid.

2.2. HMM Scores Gradient Computation

As stated previously, we derive a new formulation for gradient of
HMM scores with respect to the HMM state probability
densities. The mathematical foundation of this derivation is
presented here. Let L(k) assigned to the HMM score of kth unit:

                        L k P O k( ) ( | )= − λ                              (1)

λ k : The kth HMM.

O  : The observation sequence (feature vector sequence of

input  utterance).
According to the ML training criterion each L(k) can be
maximized separately regardless of other L(i) (i≠k) [1]. If “ c”
denotes the index of winner HMM, L(c) is the maximum of L(i)
(i=1,..K) and we can define another useful variable as:

                        H i
L i
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                                      (2)

If  the units are equiprobable, maximizing H(c) or logH(c) is
equivalent to a discriminative training scheme called MMI
(Maximum Mutual Information)[3],[4]. This means that only a
simple scaling converts a nondiscriminative criterion to a
discriminative one, but we lose the simplicity of ML training
procedure. Now we need an appropriate gradient of H(k) with
respect to the HMM parameters. First we compute the gradient of
H(k) with respect to the state probability densities of HMMs. It is
worth mentioning that this step does not depend on the type of
these probability densities (mixture of Gaussians in continuous
and semicontinuous HMMs or discrete type probability density
function in discrete HMMs). For i = c we have:
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and for i ≠ c :
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in which b(j,t) is the jth state probability density at time t.

According to Eq. (3) and Eq. (4) regardless of  i, the derivative of
H(k)  always depends on the derivative of L(c), that is the score
of the winner HMM. Derivative of L(c) can be expressed in terms
of HMM forward and backward variables (α and β respectively).
Recall that in HMM classic formulation:

                            L c TFc
( ) ( )= α                                         (5)

                     α αi ji j
j

t b i t a t( ) ( , ) ( )= −∑ 1                 (6)

                     β βi ij j
j
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αFc
T( ) : Forward HMM variable in the final state of the winner.

α i t( )  : Forward HMM variable in the ith state at time t.

βi t( )  : Backward HMM variable in the ith state at time t.

 T        : The length of input utterance.

So by chain rule we have:
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According to Eq. (6) the second parenthesis in the above
equation can be further simplified toα i t b i t( ) ( , ) . On the other

hand, the expression,∂α ∂αF jc
t t( ) ( )+1 in the first parenthesis is

satisfied in backward recursion of Eq. (7) as  β. That is :
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Meanwhile:

                   ∂α
∂α

βF

F
F

c

c

c

T

t
T

( )

( )
( )= =1

So we can conclude that:

                    
∂

∂
β αL c

b i t
t

t

b i ti
i( )

( , )
( )

( )

( , )
=                                 (9)

By Eq. (10), Eq. (3) and Eq. (4) can be compressed in a single
equation:
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in which δ kc is discrete “Dirac” delta function.

Because of the simplicity of Eq. (10), our updating scheme can
be implemented efficiently. The remaining step in gradient
computation depends on the HMMs type. For continuous and
semicontinuous HMMs, b(i,t) is a parametric probability density
function. Let θ denotes the parameters of  b(i,t). We can compute
∂ ∂ θb i t( , )  for the mixtures of Gaussians easily and then the

updating formula can be derived directly from Eq. (10) and the
chain rule:
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For discrete HMMs b(i,t) is a nonparametric discrete probability
distribution and Eq. (10) presents the desired gradient. So we can
assume θ=b(i,t) for discrete HMMs to unify these situations.

2.3. Total Gradient  and Updating Scheme

Adding the MLP to the classic HMM configuration needs a little
manipulation of the above formulation. We can regard the MLP
as a differentiable function of  the HMM scores if and only if the
differentiable functions are selected as its neuron nonlinearities.
For example a Sigmoid type nonlinearity is appropriate for this
purpose[1]. Let η denotes the outputs of this MLP, then we have:
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The second derivative in the above sum is the gradient of MLP
output with respect to MLP input that can be accessed via BP. So
the Eq.  (12) gives us the desired gradient or as we call it the
“total gradient” . Now we can write the updating rule for HMM
parameters easily using steepest descent algorithm :

               � �
( ) ( )θ θ µ ∂ η

∂ θ
t t= +− 1                        (13)

where µ is a positive real number and “ ^ ” sign denotes
estimation. For Discrete HMMs a normalization must be
performed each time we use the Eq. (13), so that the statistical
restrictions on all b(i,t), as discrete probably distributions, are



satisfied. It is worth mentioning that for each element of each
observation sequence, only one element of b(i,t) is updated. That
is:
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In the next section, a convergence proof of our training scheme
and its experimental evaluation will be presented.

3. ADVANTAGES OF OUR TRAINING
SCHEME

In this section we present some advantages of our training
scheme. First, we show that the convergence of this updating
algorithm is guaranteed. Then the results of our experimental
evaluation are discussed. These results show that our method
adds acceptable discrimination to classic HMM-based isolated
word recognizers.

3.1. Convergence Proof

Using Eq. (13) we can simply write :

η η θ θ∂ η
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−
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          = µ ∂ η
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2

But µ>0 and we have:

                                  η ηt t> −1                             (15)

Thus η  is strictly increasing during the updating procedure.
Figure 3 shows a sigmoid type function usually used as neuron
nonlinearity in neural networks. Using this type of nonlinearity
or any other limited function, η remains limited during the
updating phase, that is:

                                     η < M                             (16)

Figure 3. Sigmoid Type Nonlinearity.

According to Eq. (15) and Eq. (16), the values of η  form a
strictly increasing and limited sequence during the updating
procedure. These conditions imply that this sequence will
converge to a local maximum. So our training procedure has a

guaranteed convergence if and only if the neuron nonlinearities
are limited  functions, as we stated before.

3.2. Experimental Evaluation

In the realization phase, we use the cascade HMM/ANN hybrid
in an isolated word recognition task for 12 words (0, 1, 2, 3, 4, 5,
6, 7, 8, 9, Yes and No in Farsi). The training set includes 100
repetitions of each word from 20 native speakers (1200
utterances in sum). Another similar set is used for test. All
recordings are performed in a noisy room condition with average
signal to noise ratio of 21 dB and saved in PCM wave format
with 16 KHz sampling rate and 16 bits per sample.  Features
include 12 LP derived cepstral coefficients, 12 delta-cepstral
coefficients, energy and delta-energy which are extracted from 25
msec speech frames every 10 msec. We perform three evaluations
on the test set. First, classic HMM-based isolated word
recognizer is tested. That is 12 HMMs are trained (one HMM for
each word) through Baum-Welch Recursion. This structure
shows the recognition rate of 93.3%. The second evaluation is
performed on cascade structure before performing the updating
procedure. In this experiment an MLP with 12 nodes in output
and 120 nodes in hidden layer is trained using BP. The cascade
structure shows the recognition rate of 95%. The third
experiment is performed after the updating scheme. The fine-
tuned cascade structure shows considerably higher recognition
rate (namely 99.1%). The justification of this improvement is the
discrimination added by our training scheme. Following
comments clarify the situation.

Our experiments show that the recognition errors mostly occur
between pairs (0,3) and (2,9) (which are pronounced /s/e/f/r/,
/s/e/, /d/o/ and /n/o/h/ respectively in Farsi). As you see, these
pairs are similarly pronounced words. By using cascade
HMM/ANN hybrid such recognition errors reduced significantly
in comparison with classically trained HMMs (about 86%
reduction in number of such errors). So, our final recognizer
discriminates between similarly pronounced words much better
than ML-based recognizers. Table 1 summarizes the
improvements introduced by our training scheme for these
confusing pairs.

Confusable Pair Classic Structure Cascade Structure
( 0 , 3 ) 49 7
( 2 , 9 ) 23 3
Sum 72 10

Table 1. Comparison between classic and cascade
structures in number of confusing pairs errors.

During the training phases, an experiment is performed for
determining the optimum number of hidden layer nodes in MLP.
Figure 4  summarizes the results of this experiment. According to
this test, the optimum number of  hidden layer nodes is about 10
times of output layer nodes. In theory, the classification power of
an MLP increases when the number of  hidden layer nodes is
increased. But our experiment shows that incorporating large
number of nodes in hidden layer degrades the recognition error.
This situation occurred because of the limitation in the size of
our training set. Thus recognition rate can not be improved
further by increasing number of hidden layer nodes from this
optimum value.



Figure 4. Recognition rate versus number of hidden
layer nodes in MLP.

Training
Phase

Recognition Rate Improvement

(a) 93.3% 0%

(b) 95% 1.7%

(c) 99.1% 5.8%

Table 2. Recognition rate and its improvement
(compared to classic HMM-based isolated word
recognizer) in each training phase according to our
isolated word recognition experiment, (a) Classic HMM
structure, (b) After adding the MLP, (c) After fine
tuning.

4. CONCLUSION
In Summary we developed a new framework for discriminative
training in speech recognition with guaranteed convergence and
comparably simple realization. This framework uses the cascade
interconnection of HMMs and an MLP named as “Cascade
HMM/ANN Hybrid”. The initial estimates of system parameters
in our training procedure are obtained via standard training
schemes for each part of the cascade structure, that is Baum-
Welch for HMMs parameters, and BP for MLP. Then an
updating step is performed to improve the initial estimates. We
also prove that this updating scheme is converged if and only if
MLP neuron nonlinearities are limited functions. This cascade
structure is used in an isolated word recognition task and shows
much better performance than classic HMM-based systems.
Although we use discrete density HMMs in our experiment, our
techniques can be used easily for continuous and semicontinuous
density HMMs as shown mathematically in this paper. Table 2
summarizes the results of our tests. Referring to this table each
training step increases the recognition rate. Meanwhile our final
system has considerably higher performance than classic
recognizer (about 6% more accurate). On the other hand, analysis
of recognition errors in this experiment reveals that the cascade
structure discriminates between similarly pronounced words
much better. This analysis is summarized in Table 1. The cascade
HMM/ANN hybrid can also be incorporated in continuous
speech phoneme recognition using a two pass procedure. In the

first pass, the continuous speech is segmented to the phone-like
units and the problem is changed to a discrete utterance
recognition. In the second pass a cascade HMM/ANN hybrid
which includes phoneme HMMs, is used to recognize these
discrete utterances.
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