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Abstract - In this paper, a new design algorithm for
estimating the parameters of Gaussian Mixture
Models is presented. The method is based on the
matching pursuit algorithm. Speaker Identification
is considered as an application area. The estimated
GMM performs as good as the EM algorithm
based model. Computational complexity of the
proposed method is much lower than the EM
algorithm.

I.  INTRODUCTION
A Gaussian mixture density is defined as a
weighted sum of different Gaussian component
densities. Gaussian Mixture Models (GMM)
have been recently used in many applications as
an efficient method for modeling arbitrary
densities [1]. GMM was shown to provide a
smooth approximation to the underlying long-
term sample distribution of observations
obtained from experimental measurements [1].
This is due to the fact that a linear combination
of Gaussian basis is capable of representing a
large class of sample distributions, in addition to
the observation that most natural phenomena
tend to have a Gaussian distribution.
There are several techniques available for
estimating the parameters of a GMM. By far the
most popular and well-established method is
maximum likelihood (ML) estimation. The aim
of ML estimation is to find the model parameters
which maximize the likelihood of the GMM,
given the training data. This usually leads to a
nonlinear function of the parameters and it may
not be possible to find the optimum solution.
However, ML parameter estimates can be
obtained iteratively using a special case of the
Expectation-Maximization (EM) algorithm [2].
The EM algorithm usually leads to good
estimates of the GMM parameters, however its
computational complexity is very high, which
makes it not suitable for real-time operations
especially when the amount of training data is
huge.
In this paper a new method for estimating the
parameters of a GMM using a modified version

of the matching pursuit algorithm is introduced.
The matching pursuit based estimation method
has a much lower computational cost compared
to the EM algorithm, while assuring a good
modeling accuracy, as good as the EM-based
model.
Pursuit algorithms are generally used to
decompose arbitrarily signals. Decomposition
vectors are chosen depending upon the signal
properties. These algorithms usually have a high
computational complexity. The matching pursuit
introduced by Mallat and Zhong reduces the
computational complexity with a greedy strategy
[4]. It is closely related to projection pursuit
algorithms used in statistics and to shape-gain
vector quantizations. Vectors are selected one by
one from a dictionary, while optimizing the
signal approximation at each step. In this paper,
a modified MP algorithm is used as an
alternative method for estimating the parameters
of a GMM.
Speaker recognition is an important application
where GMMs have proven to be very efficient
[1]. The speech spectrum based parameters are
very effective for speakers modeling. For
example, the distribution of mel-cepstral
parameters are represented by GMMs in [1]. The
use of GMMs for modeling speaker identity is
motivated by the interpretation that the Gaussian
components represent some general speaker-
dependent spectral shapes.
In this paper, speaker modeling based on GMMs
is chosen as an application for evaluating the
performance of the matching pursuit based
method introduced here. Experimental results for
text-independent speaker identification are
presented and compared to results previously
obtained by the EM based method.
The rest of the paper is organized as follows. In
the next section, we describe briefly the general
form of a GMM and the EM algorithm used for
estimating its parameters, then we introduce the
new idea of using a modified matching pursuit
algorithm for estimating the parameters of a



GMM. Section III presents how this idea can be
implemented for the task of speaker
identification. Finally, in section IV
experimental results are provided and compared
to those obtained by the EM-based model.

II. ESTIMATION OF GMM PARAMETERS

A. Gaussian Mixture Models (GMMs)
Given an arbitrary D-dimensional random vector
x
&

, a Gaussian mixture density of M components
is defined as a weighted sum of individual
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where pi , i =1,…., M are the weights of the
individual components and are constrained by
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is the mean vector and ∑i is the

covariance matrix. Therefore a GMM can be
represented by the collection of its parameters λ
as
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B. Expectation Maximization (EM) Algorithm
The concern here is how to train an appropriate
GMM which can provide a smooth estimate to
the distribution of an observed random vector,
given a sufficient amount of training data. The
goal is to estimate the parameters λ of the GMM
which best matches the distribution of the
training vectors. To solve this, the maximum
likelihood (ML) estimation is commonly used.
This method tries to find which model
parameters maximize the probability )|( λXp

of the GMM given the training vectorsX . This
leads to a nonlinear function of the parameters λ.
In [2], a special case of the EM algorithm was
suggested to solve this problem. This algorithm
tries to find the estimates of the ML parameters
iteratively. It begins with an initial model λ, and
tries to estimate a better model iteratively until
some convergence is reached. According to the
experimental results obtained in [1], this
algorithm provides satisfying results when the
training data is long enough and the model order
is chosen correctly. However, the computational

complexity of this algorithm is very high. This
makes it not suitable for real-time operations
such as speaker adaptation.

C. Matching Pursuit based estimation
Matching pursuit is a recently proposed
algorithm for deriving signal-adaptive
decompositions in terms of expansion functions
chosen from an overcomplete dictionary –
overcomplete in the sense that the dictionary
elements, or atoms, exhibit a wide range of
behaviors [4]. Roughly speaking, the matching
pursuit algorithm is a greedy iterative algorithm
which tries to determine an expansion, given a
signal s[n] and a dictionary of atoms, gk[n], as
follows
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where the dictionary is a family of vectors
(atoms) gk

 included in a Hilbert space H with a
unit norm    || gγ|| = 1.
In the following, we introduce a fast method for
estimating the parameters of a GMM using a
modified version of the matching pursuit
algorithm. We select the basis functions, gk[n], as
Gaussians and fit the RHS of Equation (5) to the
histogram of the data.
Given an arbitrary D-dimensional random vector
x
&

, we want to obtain a Gaussian mixture
density, which smoothly approximates the
distribution of x

&

.

Let x
&

= [x1  x2 . . . xD]T.  Given a sequence of T

training vectors [ ]Txxx
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,.....,, 21=X , we can

write X as
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where Xi , i= 1,…, D are the sequences of
training data corresponding to each of the D
components of x

&

. If we can estimate an
appropriate Gaussian mixture distribution for
each Xi , i= 1,…,D , then we can obtain an
overall distribution of x

&

 by multiplying the
individual component densities. Thus, from each
sequence Xi of the training data, we want to
estimate a Gaussian mixture density
corresponding to the component xi , of the form
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where bm(xi), i=1,….,M are Gaussian functions.



We start by calculating the histogram of Xi , we
then normalize it by dividing it by T (the number
of samples in Xi  ) ,

T
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where Hi is the discrete distribution of Xi. Now,
we want to estimate a Gaussian mixture
distribution for xi from Hi. If we can decompose
Hi into a finite weighted sum of different
Gaussian components, then the problem is
solved.  For this we use the matching pursuit
algorithm to decompose Hi .
Matching pursuit algorithms are largely applied
using dictionaries of Gabor atoms [5]. Gabor
atoms are appropriate expansion functions for
time-frequency signal decomposition, which are
a scaled, modulated, and translated version of a
single unit-norm window function, g( . ),
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where 2x RR        ),,( +=Γ∈= εµγ s . Note

that gγ(t) is centered in a neighborhood of µ
whose size is proportional to s and its Fourier
transform is centered at εω = . This parametric
model provides modification capabilities for
time and frequency localization properties of
signals. In our application the modulation factor

tje ε is not necessary since the frequency
localization has no meaning in this case, and thus
it is dropped and we use
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Furthermore, if we choose g(t) as a Gaussian
function of unit norm
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then the resulting gγ(t) are valid Gaussian
functions that can be used to decompose Hi.
To obtain the discrete form of (10), we sample
the Gabor atoms to obtain
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where  x RR    ),( +=Γ∈= µγ s , N is the

sampling period, and Kγ is a constant that is

adjusted so that 1|||| =γg .

 The method proceeds as follows. We first define
our dictionary ' as a family of vectors gγ , γ∈Γ.
The form of gγ is shown in (12). The dictionary
should be large enough to cover a wide range of

vectors. The algorithm starts by finding 
0,i

gγ ∈'

that best matches Hi in the sense that

|,|
0,
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gH i γ
, which is a measure of similarity

between Hi and 
0,i

gγ , is maximized, i.e.,
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Then, we can write
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where RHi is the residual vector. The iteration
then proceeds on RHi as the initial vector.
Suppose that RnHi denotes the nth residual of Hi ,
at the nth iteration we get
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If we carry the iteration to order M, we obtain
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Neglecting last residual RMHi, we obtain

∑
−

=
≈

1

0
,,

M

n
ninii gH γα                      (17)

>=<
nii

n
ni gHR

,, , γα                (18)

which gives a decomposition of Hi as a weighted
sum of Gaussian components. We further
normalize the weights of the individual
components as
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so that  1
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valid GMM for xi :
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The described procedure should be carried out
for each single element xi, i=1,…,D, of the
random vector x

&

. The D resulting GMM’s are
multiplied to obtain the overall estimated
distribution of x

&

.
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where { }ninip ,, ,γλ = , n = 0,…,M-1, i= 1,…,D.

D. Fast Calculations
The matching pursuit can be implemented using
a fast algorithm described in [8], that computes

>< +
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n ,  with a

simple updating formula.
Consider (15), we can write it as
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Take the inner product with γg on each side, we

obtain
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which is a simple updating formula for
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. If we can calculate the inner

product of all the atoms in the dictionary

>< βα gg ,  and store it in a lookup table, then

we can use this update formula to calculate
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 at each iteration. The final

algorithm is summarized in the following:

For each Hi , i=1,…,D

1. set n = 0 and compute Γ∈>< γγ },{ gHi
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4. If  n < M-1  increment n and go to 2.

III. SPEAKER IDENTIFICATION
The main task of speaker identification is to
extract and model the speaker-dependent
characteristics of the speech signal, which can
effectively distinguish one talker from another.

A. Speech analysis
The speech signal is first analyzed, and the
silence periods are removed. Then the signal is
divided into overlapping frames of
approximately 20 ms length and a spacing of 10
ms. For each frame, cepstral coefficients derived
from a mel-frequency filterbank (MFCC) are
extracted [3].

B. Speaker identification
In speaker identification we a have a group of S
speaker. For each speaker a training utterance is
recorded. Form this utterance, a sequence of
feature vectors is extracted and a GMM is
estimated for that speaker. Each speaker will be
represented by his own GMM λi , i = 1, … , S.

Whenever an test sequence X  is given, the
model which maximizes the probability of
observing this sequence is chosen and the
corresponding speaker is identified as follows,
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In the experiments which follow, the matching
pursuit method introduced in the previous
section, is used to estimate a Gaussian mixture

density for the feature vectors extracted from the
speech signal. Figure 1, shows Gaussian mixture
distributions estimated for some MFCC
parameters using the matching pursuit method
and the EM method. The estimated distributions
shown in Figure 1, are scaled so as to fit the
histogram of the MFCC parameters. Note that
the estimation is good and smooth in both
methods. The matching pursuit based model
performs as good as the EM based model.

                       (a)         (b)

   (c) (d)
Fig. 1. The histograms of single cepstral coefficients and
their corresponding distribution estimation: (a) MFCC2 using
MP, (b) MFCC2 using EM, (c) MFCC12 using MP, (d)
MFCC12 using EM.

C. Implementation
In this part, some algorithmic issues will be
discussed. The first issue is the number the mel-
cepstral coefficients used in parameterizing the
speech signal. Usually, for each frame 12-MFFC
coefficients are derived. Nevertheless, in some
applications [6], it was shown useful to derive 24
coefficients: 12 MFCC and 12 ∆-MFCC, which
are concatenated to form the feature vector.
Note also that when using the matching pursuit
method developed in the previous section, a
GMM model can be derived for each single
feature from the feature vector separately. In
speaker identification this enables us to obtain
the probability of observing each element in the
feature vector sequence separately. So, two
methods are possible for making a decision
about the identity of the speaker, given the

feature vector sequence [ ]TDXXXX ,.....,, 21= :

Method 1: This is the traditional method where
the speaker is chosen upon the probability
derived from the overall GMM model

 )(maxarg
1
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Method 2: Obtain the probability of each feature
separately for all speaker models. Then check
how many features get the largest probability in
each model, the model which gets the maximum
probability in more features is chosen.
Calculate pn,i = p( Xn | λi ), for every feature    (n=
1,..,D) and every model ( i = 1,…,S).



The model λi which yields maximum pn,i for
more features is chosen and the corresponding
speaker is identified.
Our experiments are done using both of these
methods and results are compared.

D. Database Description
The experiments were carried out on the
POLYCOST 250 database (v1.0). The
POLYCOST database is dedicated to speaker
recognition applications [7]. The main purpose
behind it is to provide a common database on
which speaker recognition algorithms can be
compared and validated. The database was
recorded from 134 subjects coming from 14
European countries. Around 10 sessions were
recorded for each subject, each session contains
14 items. The recordings were made over  the
telephone network with an 8 kHz sampling
frequency. In [7], a set of baseline experiments is
defined for which results should be included
when presenting evaluations made on this
database. Our experiments follow the set of rules
defined in [7] under “text-independent speaker
identification” .

IV.  EXPERIMENTAL RESULTS AND
CONCLUSIONS

Models are trained using nearly 20 sec of 8 kHz
speech samples. Tests are done using utterances
of about 5 sec. 10 speakers are used in these
experiments. Recordings from two sessions are
used for training, and  about six sessions are used
for testing.
Speaker modeling was carried out using the
matching pursuit method and the EM method.
Table 1 shows the identification rate obtained for
each method. The model order in both methods
is M=16. Both experiments are done under
exactly the same conditions and using the same
speech data. Here we used the overall probability
of the feature vectors for the MP method. Table
1 also includes the necessary training time (using
MATLAB in a Pentium-based PC) for each
method, corresponding to a training sequence of
40 sec.

TABLE I
Identification performance of MP and EM based models.
The training data corresponds to a training data of 40 sec.

M=16.
MP-based model EM-based model

Ident. Rate 70% 71%
Training time 3 min 14 min

The performance obtained using the matching
pursuit method is as good as the performance of
the EM based method. However, the training
time required by the MP method  is remarkably
shorter than that required by the EM algorithm,

this shows the low computational complexity of
the MP method. During training, the EM
algorithm needs many iterations to reach
convergence, while the matching pursuit
algorithm has a fixed number of iteration which
is equal the model order M, which is usually low
(in the order of 16).  Moreover the calculations
involved in the EM algorithm are
computationally costly. The MP algorithm saves
a lot of calculations using the updating formula
(23) and the inner product lookup table for the
atoms.
Table 2 shows the identification rates obtained
by the MP algorithm for different model order M
using both methods described in part C for
deciding on the speaker identity.

TABLE II
Identification performance of the MP method using speaker
identity decision based on  a) D-variate GMM probability

and, b) probability of separate feature models.
Model order a.D-variate model  b. Separate feat. models
M = 4 63% 58%
M = 8 69% 65%
M = 12 71% 73%
M = 16 70% 68%

It is clear that the model order M is important for
the precision of the model. Nevertheless, beyond
some point (around M=12) increasing the model
order is useless and can decrease the
performance. Note also that using separate
feature models can also be as good as (or even
better than) using an Overall GMM, when the
model order is appropriate.
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