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ABSTRACT

The fractional Fourier tranafrom is an important tool
for both signal processing and optical communities.
This paper presents a tutorial which includes the major
related aspects of this transformation.

1. INTRODUCTION

The fractional Fourier transform (FRT) operation was
shown Lo be uselul For various spatial fillering and sig-
nal processing applications [1]-[8]. The FHT i3 a private
caac of the ABCD matrix. When the ABCD matrix

decepl Lhe form ol
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the AR transform heromes the FRT
In thia transform the amount of shift variance may
be controlled by choosing the proper fractional order p
for the transformation while ¢ is ¢ = % Whan the
fractional order 13 one, the FRT beecomes the conven-
tienal Fourier transform which is totally shift invariant.
For fractional order of zero the FRT gives the input
function, 1.c totally shift variant. For any other frae-

tinal orders in belween, the iransform has a partial
amount of shift variance.

2. FHT- DEFINITION

There are two common interpretations for the FRT.
Brth definitinns were proven to he identical ag shown

in Ref, [?1

2.1. Definition based on propagation in graded
index media

The firat FRT definition [9, 10, 11] i3 based on the field
propagating along a gquadratic graded index [GRIN)
medium having a length proportional to p {p being the
FRT order). The eigen-modes of quadratic GRIN me-

dia are the Hennile-Gaussian (HG) functions, which

form an erthogonal and complete bams set. 'T'he mth
member of this aet ia expressed as
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where H., 15 & Hermite polynomial of order mt and w ts
a constant associated with the GHRIN medium param-
ctera. An extension to twe lateral coordinates z and
v is straightforward, with ¥..{2)%, (1) as elementary
functions.

The propagation constant for each HG mode is given
by,
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with & = 27 /A The HG eet is used to decompase any
arbitrary distribution wi{c)

u(r) = ¥ AnUn(r), (4)
where the coeflicient A., of each mode ¥, (2] is given
by:

A= | 2P () d, (5)
with fim = 2™ml frw /2

Using Lhe above decomposiltion, the FRT of order p
ia dafined as

FPlul(z)} = 3 AW (z) exp (ifmpl) (6}

L= (mfd)y/n1fna 15 the GRIN length that results
in the conventional Fourier transform. It was shown
[14] that this definition agrees well with the classical
Fourier transfortn definition when p = 1.

2.2, Definition based on Wigner distribution fune-

tion

A complete signal deseription, displaying space and fre-
gueney informedion simultancoualy, can be achicved by

the space-frequency WDTF [12].



In Rel. [13] ihe fractional Fourier iranslorm vper-
ation is defined hy following the signal u(z) while its
WDF 18 rolated by an angle ¢ = pr/2. Note that the
WDF of a 1-1 function is a 2-D function and the rota-
tinn interpretation s easily displayed. Tn Ref {13], the
same rotation strategy wae generalized to 2 D signals,
i.e. images, whose WDTDs are 4-D distributiona. The
WDF of A function can be rotated with holk opties. Tt
was suggested |13| to use the oplical system of Fig. 1
for implementing the FRT operator.
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Figure 1: 'The two possible optical estups for obtain-

g the FRT. a). Type I configuration. b}, type II
configuration.

This optical setup represents in the WDF space
three shearing operations: &z, r shearing or v, 2, -
shearing.  Where & is the spectral courdinale and ¢
18 the spatial ane The »-ghearing is performed by free-
space propagation , then a lens performa r-shearing,
then agaln c-shearing is perflormed Ly frec-space prop-
agation. In his paper [13], Lohmann characterized this
optical system using two parameters, ¢J and R

f=h/q ; = fiR, {1

where f1 is an arbitrary leogth, f is the focal length of
the lens and = ia the distance between the lens and the

input [or output) planc, As known from Ref. [15] for

an FRT of urder p, @ and & should be chosen as:

It — tan {¢/2) & = s {g) (8)
for the type [ configuration and as

R=sin($) .,  Q-tan(s/2) (9)

for the type II configuration. Nete that ¢ = p{r /29,
By analyzing the cptical configuration of Fig. 1,
Lohmann (Het” {14]) obtained:

up(z) = FFlufrg)]
= /:Z u(zg)exp (ix%) .
exp[—i!zﬁ}dmn (10}
with -
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This last equation defines the FHT for 1-L} functions
with A as a wavelength, Generalization for 2-13 fune-
Livus iy straightforward. Note that Af; is also coined
the scaling factor.

The two interpretations of the FRT operation have
been woited ke one formulation through a transfor-
maticn kernel, as illustrated in Ref. [8):

m
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where Bp(r r")is the kernel of the Lransformation and
p 16 the fractional order. The kornel has two optical

interpretalions, one as a propagation through GRIN
medinm [10]
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il the second as a colation operalion applied over the
Wigner plane [13]
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WNate that w is the coefhicient that connects the two

interprotations:
Af
W= — 15
A (15)

Caretul examination of the expression of Eg. 14
shows that the FRT is a localized transformation. YWhen



one says localized, in this context, it means that the in-
put funetion is actually multiplied by a spare window

as is done in the Gabor tranaform [14]. In the FRT
casc the space window is a phase window (the chirp
phase funetion explar %}] and not an amplitude
window as in the criginal Gabor trapsform. In a chirp
fuinction one can notice that as the distance from the
origin increases the apatial {requency increases ag well
and eventually the spatial frequency becomes so high
thal. while calenlating the integral of Fq. 12, we have
under sgampling case. Ae a result we lost the higher
lrequencies and the phase window 15 cquivalent to an
amplitude window,

2.3. Properties of the FRT

» Linearity:
The FRT of a linear combination of two input
funclions uy and us behave according Lo the defi-
nition of linear systems. ¢; and e; are conatants.
FPleyw () + caunla)] =
PPl + el Pluatel}  (16)

¢ Continaity:
Two FRTs with different ordera py and pg yield
the following theorem:

Forrerlu(z)) = FO[F (u(z)]
FrarsFer (u(z))]

(17)

» Parzseval’s theorem:
{n ] o
" )
f [ua{xe} “dxo ‘/ |z, )z, (18)
—ma -
+ Shift theorem:

If the input object ia shifted by the amount of &,
then its FRT yields:

up(ri6) = {FPlup(zo + al]}
= cxpliwasin$(2z + acoad)] -
up(z + ocos ¢} {19}

v Scaling theorsm.

If the iuput oliject is scaled by the [aclur of u,
then its FRT yields:
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3. FRACTIONAL CORRELATION

In zeveral pattern recognition applications the shift in-
variance properky within all of the input plane is nat
necessary and even disturbs. An example 18 the case
where the object is to be recagnized culy when its o
cation is ingide A rertain area and rejected orherwise,
a.g. a passport with a picture that should appear only
at the upper right area. Several approachies for ublain-
ing such space varianee detection have heen suggested
[15]-[20]. A related solution is the ool coined frac
tional correlation {FCY which is based upon the frac-
tional Fourier transform [21, 22]. The FC operation
allows to contrel the amount of shift variant property
of the correlation. This property is Lased un the shifl
varianee of the FRT and it is mare significant. for rhe
fractional orders of p % 04+ 2N and besg [or pre 1+ 2N
(N is sny integer).

In contrast to a solution of using an apprapriate
input pupil which 1s open in the desired location, the
FC does nol require any additional equipment for ita
optical implementation. An additiomal example far tha
necessity of the FO is the casa where the recognition
should mainly be based on the central pixels awd less
an the outer pixels (far instance in systems whose apa-
tial reeclution is improved in the central pixels, and
thus the central region of pixels is more reliable for the
recognition process). An important application for the
FC might be the detection of localized abjects using
& single cell detector, climinating the need for & CCD
array detector.

'L'he alganthm for performing a PO consists of ob
taining the product of the [ractional transforms of the
distributicns to be correlated, rendering a last FRT tn
aobtain the final result. Analytically, the operation of
FC of an input function, f{z), with a reference pattern,
giz}, is defined as follows:

Cpypa e {27) = FAFT {f2)} FP2 {g(x)} ) (23)

Where jry, g2, pa are bhe orders of the FRTS Lo perform,
in principle arhitrary. Chue Lo various reasons, detailed
in Ref. [21], the moat obvious choiec ia:

m=pn fig = —p ra=-=1 {24}

with p ranging from 0 to 1. In thie case, of the in
put coincides with the reference object, a perfect plinse
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