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ABSTRACT

The fractional Fourier transform is more general
and exible than the ordinary Fourier transform, but
its optical and digital implementation is just as e�-
cient. This underlies its potential for generalizations
and improvements in every area of digital and optical
signal processing. Here we consider applications of the
transform to �ltering, estimation and restoration. We
see that the use of fractional Fourier transform based
�ltering con�gurations allow one to exibly trade o�
between cost and accuracy in these applications.

1. INTRODUCTION

In many applications of digital and optical signal pro-
cessing, it is desired to implement general linear sys-
tems of the form g(u) =

R
H(u; u0)f(u0) du0. Such sys-

tems take the form of a matrix-vector product when
discretized: gk =

PN

n=1Hknfn or g = Hf . This may
either represent a system which is inherently discrete
or may constitute an approximation of a continuous
system. Digital implementation of such general lin-
ear systems takes O(N2) time. Common single-stage
optical implementations, such as optical matrix-vector
multiplier architectures or multi-facet architectures [1]
require an optical system whose space-bandwidth prod-
uct is O(N2).

The output of a shift-invariant (convolution) system
characterized by the impulse response h(u) is related
to the input by the relation g(u) =

R
h(u�u0)f(u0) du0

whose discrete form is gk =
PN�1

n=0 hk�nfn, which is
again a matrix-vector multiplication, but this time with
the matrix being of a special form. Digital implemen-
tation of such shift-invariant systems takes O(N logN)
time (by using the FFT) since they correspond to con-
volution in the time or space domain and multiplica-
tion with a �lter function in the Fourier domain. Op-
tical implementation requires an optical system whose
space-bandwidth product is O(N).

Due to the intrinsic nature of some problems , con-
volution-type systems are fully adequate. In fact, in
some cases, they represent the optimal choice out of all
linear systems. For example, the optimal linear estima-
tion �lter (Wiener �lter) for time-invariant distortions
and stationary signals turns out to be of the convolu-
tion form. However, in other cases, the use of shift-
invariant systems is either totally inappropriate or at
best a crude approximation which is employed only be-
cause of its signi�cantly lower digital or optical imple-
mentation cost. This is not surprising given the fact
that shift-invariant systems are a much more restric-
tive class than general linear systems, which is evident
upon noting that general linear systems have N2 de-
grees of freedom whereas shift-invariant systems have
only N .

We may think of shift-invariant systems and general
linear systems as representing two extremes in a cost-
accuracy tradeo�. Sometimes use of shift-invariant sys-
tems may be inadequate, but at the same time use of
general linear systems may be overkill and prohibitively
costly. In such situations where both extremes are un-
acceptable, or simply when we desire greater exibility
in trading o� between cost and accuracy, it would be
desirable to be able to interpolate between these two
extremes. There may be many ways of achieving this.
In this paper we will consider multi-stage (repeated)
�ltering, multi-channel (parallel) �ltering and �ltering
circuits in fractional Fourier domains. Common single-
stage Fourier-domain �ltering is shown in Fig.1a. The
dual of this operation is single-stage time-domain �l-
tering, and is shown in Fig.1b. Fig.1c depicts single-
stage �ltering in the ath order fractional Fourier do-
main. This �ltering con�guration generalizes the time
and Fourier-domain �ltering con�gurations and is dis-
cussed in [2, 3, 4] together with some applications.

The ath order fractional Fourier transform Fa is
the generalization of the ordinary Fourier transform,
such that a = 1 corresponds to the ordinary Fourier
transform and a = 0 corresponds to the identity op-
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Figure 1: Single-stage �ltering in the Fourier domain
(a), the time domain (b), and the ath order fractional
Fourier domain (c). Multi-stage (repeated) �ltering
(d). Multi-channel (parallel) �ltering (e).

eration [5, 6, 8]. Thus, when a = 1, the �ltering
scheme in Fig. 1c corresponds to ordinary Fourier do-
main �ltering (shift-invariant or convolution-type sys-
tems). When a = 0, it corresponds to direct multi-
plication by h(u) in the time domain (Fig. 1b). The
costs of both digital and optical implementations of
fractional Fourier domain �ltering are the same as that
of ordinary Fourier domain �ltering [2, 11]. We refer
the reader to [5, 6, 7] for a more detailed introduction
to the fractional Fourier transform together with some
of its applications.

2. MULTI-STAGE AND MULTI-CHANNEL
FILTERING

The multi-stage (repeated) �ltering scheme (Fig. 1d)
�rst suggested in [5, 9] consists ofM single-stage blocks
connected consecutively or in series. The input is �rst
transformed into the a1th domain where it is multiplied
by a �lter h1(u). The result is then transformed back
into the original domain [13, 14]. This process is re-
peatedM times. 1 (The back transform of stage k with

1It has been shown in [10] that, by modifying the �lters hj(u)
appropriately, the repeated con�guration can be reduced to one
involving only ordinary Fourier transforms. However, the modi-
�ed �lters often exhibit oscillatory behavior so that this reduction

order ak, may be combined with the forward transform
of stage k + 1 with order ak+1, resulting in a single
transform of order ak+1�ak. Thus the system consists
of multiplicative �lters sandwiched between fractional
transform stages of order a0k = ak+1 � ak.)

The multi-channel �lter structure, on the other hand,
consists of M single-stage blocks in parallel [16, 17].
For each channel k, the input is transformed to the
akth domain, multiplied with a �lter hk(u), and then
transformed back (Fig.1e). (More generally, we may
choose not to back transform, or to transform to some
other domain.)

Let hjn denote the nth sample of the jth �lter
hj(u), and �j denote the diagonal matrix whose ele-
ments are equal to those of the vector hj = [hj0 hj1 : : :

hjN�1
]T. Then, the output vectors g are related to the

input vectors f according to the relations2

g =
�
F�aM�M : : :Fa2�a1�1F

a1
�
f = Tmsf ; (1)

g =

"
MX
k=1

F�ak�kF
ak

#
f = Tmcf ; (2)

where Faj represents the discrete ajth order fractional
Fourier transform matrix [11, 18] and, Tms and Tmc

correspond to the overall kernel of the multi-stage and
multi-channel con�gurations respectively. From the
above equations we see that overall kernel Tmc of the
multi-channel �ltering structure depends linearly on
�lter-coe�cients hjn while Tms depends nonlinearly.
Thus in a given application, the optimal �lter coe�-
cients may be found analytically in the multi-channel
case [16], whereas they can be found by using iterative
algorithms in the multi-stage case [13].

We used M single-stage fractional Fourier domain
�lters as building blocks to construct the multi-stage
and multi-channel con�gurations in fractional domains.
For the multi-stage case, they are combined in series.
For the multi-channel case, they are combined in par-
allel. In analogy to circuit theory, we can further gen-
eralize these con�gurations to speak of �ltering circuits
in fractional Fourier domains [16, 13]. An example of
such a �ltering circuit is shown in Fig. 2.

The repeated and parallel con�gurations have at
mostMN+M degrees of freedom. Their digital imple-
mentation will take O(MN logN) time since the frac-
tional Fourier transform can be implemented in O(N
logN) time [11]. Optical implementation will require
an M -stage or M -channel optical system, each with
space-bandwidth product N [12]. We see that these
con�gurations lie (interpolate) between general linear

is not necessarily bene�cial in practice.
2The extension to two-dimensions and/or rectangular matri-

ces is straightforward.



Figure 2: Each block corresponds to �gure 1c.

systems and shift-invariant systems both in terms of
cost and exibility. If we choose M to be small, cost
and exibility are both low. If we choose M larger,
cost and exibility are both higher. In between, these
systems give us considerable freedom in trading o� ef-
�ciency and exibility for each other, the latter which
will translate into a better approximation and greater
accuracy in most applications. M = 1 corresponds to
single-stage �ltering. As M approaches N , the number
of degrees of freedom of the repeated �ltering con�gu-
ration approaches that of a general linear system.

The important point is that increasing M gives us
greater exibility and will allow us to realize a broader
class of linear systems, or put in a di�erent way, to bet-
ter approximate a given linear system. In other words,
the capabilities of an M -stage system can be charac-
terized in two ways. First, for a given value of M , we
can realize a certain subset of all linear systems exactly
(or to some other speci�ed degree of accuracy). As M
increases, the subset in question becomes larger and
larger. Second, and perhaps more useful, is to consider
the problem of approximating a given linear system.
For a given value of M , we can approximate this sys-
tem with a certain degree of accuracy (or error). For
instance, a shift-invariant system can be realized with
perfect accuracy with M = 1. In general, there will
be a �nite accuracy for each value of M . As M is in-
creased, the accuracy will usually increase (but never
decrease). Thus, in the context of a particular appli-
cation or problem, we can seek the minimum value of
M which results in the desired accuracy, or the highest
accuracy (or minimum error) that can be achieved for
a given value of M . Of course, this amounts to seeking
the best performance for given cost, or least cost for
given performance. Such cost-performance points are
referred to as Pareto optimal cost-performance com-
binations. The locus of such Pareto optimal points
constitutes the cost-performance tradeo� curve.

The �ltering con�gurations introduced above may
�nd many applications in digital and optical signal pro-
cessing, such as in signal recovery and estimation, sys-

tem synthesis, and signal synthesis. In the recovery
and estimation applications the aim is to recover the
desired signal or system from the observed degraded
data. This problem is well known to be an ill-posed
problem. The general linear solution to this problem
is known. However, the optical and digital implemen-
tation of this direct solution would require very high
cost. For this reason, fractional Fourier domain �lter-
ing con�gurations which have e�cient implementations
may be used instead [13, 16, 14, 17].

In the synthesis applications our aim is to synthesize
a desired input or output signal, or a desired system.
The problem of approximately synthesizing a general
linear system arises when we want to implement that
system e�ciently. If we can approximately synthesize
a system in terms of a few number of other systems
with e�cient implementation algorithms, then we can
reduce the cost considerably. The fractional Fourier
domain �ltering con�gurations suggest a exible way
of synthesizing general linear systems e�ciently [13, 15,
16, 17].

An example of the signal synthesis problem arises
in optics when we want to synthesize a desired optical
wave from a given optical wave both of which are char-
acterized by their statistical properties. These statisti-
cal properties are in general in the form of second-order
statistics, and are given by mutual intensity functions
in optics, and this leads to non-linear quadratic equa-
tions in most of the cases. By introducing a positive-
square root representation we can reduce this nonlin-
ear quadratic problem to a linear one, and then we
can use the �ltering con�gurations introduced above
to e�ciently synthesize the desired output optical �eld
characterized by its mutual intensity function from a
given optical source [3, 16, 13].

The proposed system can be used in a given ap-
plication in one of two distinct ways, which we now
distinguish. (i) Starting with a signal restoration, re-
covery, or reconstruction problem, we determine the
optimal linear estimation or reconstruction matrix us-
ing any models and methods considered appropriate.
Or, we may simply be given a matrix H to multiply
input vectors f with. Then, we seek the transform or-
ders aj and �lters hj such that the resulting matrix
T (as given by (1) or (2)) is as close as possible to H
according to some speci�ed criteria. (ii) We take (1)
or (2) as a constraint on the form of the linear estima-
tion or reconstruction matrix to be employed. Given a
speci�c optimization criteria, such as minimum mean-
square error, we �nd the optimal values of aj and hj
such that the given criteria is optimized.



3. EXAMPLES

In this section we consider the application of the in-
troduced �ltering con�gurations to signal restoration.
In the signal restoration problems, the aim is to re-
cover or estimate the signals which are degraded by a
known distortion and/or by noise. A commonly used
observation model is

g = Gf + n; (3)

where G is the linear system that degrades the desired
signal (may be an image) f , and n is an possibly addi-
tive noise term. We here propose the use of fractional
Fourier domain �ltering circuits to recover the desired
signal so that our problem is to minimize the error

�2e = E
�
kf �Tgk2

�
where T is in the form of either Tms, Tmc or �ltering
circuits.

As an example, we consider the restoration of im-
ages blurred by a space-variant point spread function.
The point spread function is local and Gaussian in
shape and its width changes slightly with position. For
the single stage case the normalized error between the
restored image and original image turns out to be 22%.
The multi-stage case results in error of 10%, and 3% for
M = 3 and M = 5 �lters respectively. The resulting
error would be 9% and 5% for the multi-channel case
with M = 3 and M = 5 �lters. Figure 3 shows the
original, degraded and restored images.

We also investigate the use of fractional Fourier
domain �ltering circuit concept in the above image
restoration example. We consider the �ltering circuit
which consists of two branches each with two �lters.
The fractional domains are chosen as a1 = 0:25, a2 =
0:5 for the upper branch and a3 = 0:75, a4 = 1 for the
lower branch. The overall operator representing this
circuit is given by,

Tfc =

2X
k=1

F�a2k�2kF
a2k�a2k�1�2k�1F

a2k�1 (4)

where �l is a diagonal matrix whose diagonal consists
of the �lter vector hl as before. In order to solve for
the optimal �lter functions we modify the iterative al-
gorithm suggested in [13] so that we �rst initialize the
�lters h1 and h3 to vectors consisting of 1s and then
solve for the optimal �lter vector h2 and h4 [16]. We
then take the solutions for h2 and h4 as constants and
solve for the optimal �lter vectors h1 and h3. We con-
tinue to apply this procedure iteratively until the error
does not change signi�cantly as compared to the pre-
vious step. The normalized error turns out to be 2%.

(a) (b)

(c) (d)

Figure 3: Original image (a). Blurred image (b). Re-
stored by repeated �ltering (M = 5) (c). Restored by
multi-channel �ltering (M = 5) (d).

This �gure is slightly better than the �gures obtained
by the multi-stage and the multi-channel �ltering con-
�gurations with 5 �lters.

We next consider the problem of recovering a signal
consisting of multiple chirp-like components buried in
white Gaussian noise with a signal-to-noise ratio = 0:1.
We assume that the signal consists of 6 chirps with uni-
formly distributed random amplitudes and time shifts,
and that the chirp rates are known with a �5% accu-
racy. With approach (i) described at the end of pre-
vious section, the multi-channel con�guration results
in a mean-square error of 5:2% with M = 6. With
approach (ii), the same number of �lters results in an
estimation error of 2:6%.

4. DISCUSSION AND CONCLUSION

The repeated and multi-channel con�gurations may be
based on other transforms with fast algorithms, instead
of the fractional Fourier transform. For instance, the
three-parameter family of linear canonical transforms
may be used. Concentrating on (2), the essential idea
is to approximate a general linear operator as a linear
combination of operators with fast algorithms. If an
acceptable approximation can be found with a value of
M which is not too large, the computational burden
can be signi�cantly reduced.



Naturally, the number of stages and �lters required
to attain a given accuracy will be smaller for matrices
exhibiting greater regularity or other more subtle forms
of intrinsic structure. In such cases, direct implementa-
tion of the matrix-vector product is clearly ine�cient.
The regularity or structure inherent in a given matrix
can be exploited on a case by case basis through inge-
nuity or invention; most sparse matrix algorithms and
fast transform algorithms are obtained in this manner.
In contrast, our method provides a systematic way of
obtaining an e�cient implementation which does not
require ingenuity on a case by case basis. This ap-
proach would be especially useful when the regularity
or structure of the matrix is not simple or is not ex-
pressed symbolically or when we are presented with a
speci�c matrix in numerical form for which no easily
discernible regularity or structure is apparent.

A distinct circumstance in which the method may
be bene�cial, even when a strong intrinsic structure
does not exist, is when it is su�cient to compute the
matrix-vector product with limited accuracy. This may
be the case when some other component or stage of
the overall system limits the accuracy to a lower value
anyway, or simply when the application itself demands
limited accuracy.
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