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ABSTRACT

In this paper we introduce a class of nonlinear filters, whose
impulse and frequency responses are expressed in terms of
delta-functions. Since such filters named delta-filters are
completely defined by univariate function, the design technique
based on linear filter prototype can be used. We consider
possible types of the delta-filters and their properties. A simple
example demonstrating the proposed design technique is also
included in the paper.

1.   INTRODUCTION

As opposed to designing of linear filters, which is based on
approximation of a given magnitude characteristic of an ideal
filter (for example, low-pass or high-pass), a synthesis of
nonlinear filters does not allow so simple and evident treatment.
In the nonlinear signal filtering, spectrum transformation is a
more sophisticated process resulting in intermodulations and
other frequency interactions. At the same time using these more
rich nonlinear phenomena just allows us to solve tasks linear
filtering fails to do [1].

To describe nonlinear filtering effects in the frequency domain
generalized frequency responses have been used [2]. As these
functions are multidimensional, it is rather difficult to apply
them for nonlinear filter design. Under some restriction on a
class of input signals, for example, focusing solely on sine wave
signals, efficient methods for quadratic filter design have been
proposed [3, 4].

In a class of polynomial (Volterra) filters, it is possible to
extract filters with kernels expressed in terms of delta-functions
in the frequency or time domains. These filters named delta-
filters are powerful enough to resolve a lot of tasks in practice.
Definition of the delta-filters responses by one-dimensional
slices enables to reduce a problem to design of a linear
prototype filter and make use of well-known methods of linear
filter design [5]. Besides, delta-filters are considerably easier to
implement than common Volterra filters.

In this papers we shall present theoretical basis of the delta-
filtering and demonstrate the design technique by using sine
wave parameter estimation as an example.

2.   FREQUENCY DOMAIN
REPRESENTATION

A frequency response of an M-th order polynomial filter may be
characterized with transfer functions (kernels in the frequency

domain) H1(ω), H2(ω1,ω2), ..., HM(ω1,... ,ωM) and defined as
summation
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of a linear component Y1(ω) = H1(ω)X(ω) and nonlinear
components Ym(ω) (m > 1) which are given by
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where Ym(ω1, ..., ωm) = Hm(ω1, ..., ωm)X(ω1)⋅…⋅X(ωM).

For simplification of the frequency analysis of nonlinear
systems, generalized describing functions have been introduced
in [7]. These functions are defined only on the input frequency
range and hence can not be used to describe of nonlinear effects
connected with new frequencies generation.

In order to overcome this limitation, let’s introduce some new
concepts [8]. At first, we consider a spectrum of n-th power of
an input signal defined by
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This function contains all frequency components of m-th order
nonlinearity. We shall call Xm(ω) a nonlinear input spectrum�
and Ym(ω) given by (2) − a nonlinear output spectrum of the
order m.

To characterize the relation between these spectra at a frequency
ω, let’s also define a function
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for Xm(ω) ≠ 0. If m = 1, this function is the frequency response
of a linear filter. For m ≥ 2, this one depends on X(ω) and may
be considered as a quasi-linear description of m-th order
nonlinearity. As follows from (2) − (4) the function Gm(ω, X(ω))
describes a relationship between frequency components of the
spectra Xm(ω) and Ym(ω) derived by integration on hyperplanes
ω1 + ...+ ωm = ω. Therefore, function Gm(ω, X(ω)) may be
regarded as integral frequency response of the m-th order.

Now using (4) we can rewrite the frequency response Y(ω) of
M�th order polynomial filter as follows
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This series is an equivalent representation of the polynomial
filter in the form similar to Hammerstein's model with input
dependent frequency responses.

3.   FILTER DESCRIPTION VIA KERNEL
SLICES

In contrast to linear case, for synthesis of nonlinear filters with
given frequency properties, it is necessary beforehand to define
a class of input signals. In order to analyze possible output
frequency component of the filter, at first the input nonlinear
spectrum can be derived. It allows one to choose the order and
structure of the filter suitable for the given task. Then,
requirements to the integral frequency response are formed, and
filter coefficients are calculated.

In order to simplify the analysis and synthesis of filters in the
frequency domain, a sine wave input may be selected. In
practice, by using even a single sinusoid it is possible to get
qualitative picture of filtering process, but also to gain insight
into choice of a structure and parameters of a nonlinear filter
being designed.

For an important subclass of quadratic filters with input signal
x(n) = A0 + A1cosλn, Eqs. (3) and (4) can be rewritten as
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It should be noted that the integral frequency response is defined
at the frequencies ω = 0, ω = λ, ω = 2λ such that X2(ω) ≠ 0 and
can be represented by the three components
{ G2,0(λ)δ(ω), G2,1(λ)δ(ω − λ), G2,2(λ)δ(ω − 2λ)} expressed in
terms of one-dimensional slices of the two-dimensional transfer
function H2(ω1, ω2).

For m-th order� the integral frequency response Gm(ω) of the
nonlinear filter for the sinusoidal input is the following set
{ Gm,0(λ)δ(ω), Gm,1(λ)δ(ω − λ), ..., Gm,m(λ)δ(ω − mλ)} defined by
the one-dimensional slices of the m-dimensional transfer
function Hm(ω1, ..., ωm).

The slices specify a contribution of different harmonics to the
output signal and, therefore, may be used to provide the given
filter performance. For example, to suppress DC and a
frequency component at ω =2λ in the output signal of the
quadratic filter the following condition has to be satisfied:

H2(0, 0) = H2(−λ, λ) = H2(λ, λ) = 0.

The requirements produced to the kernel slice in the frequency
domain can be transformed into equivalent ones to the nonlinear
impulse response which are required for implementation of the
filter to be designed.

Let the slice of the of the m-th order frequency kernel be

Hm
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where a + b + c = m. For brevity we shall designate (6) by
Hm(λ(a), 0(b), −λ(c)) and call it (a, b, c)-slice.

Proposition 1. If a nonlinear impulse response hm(n1, ..., nm)
satisfies the following condition
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for ∀n, then (a, b, c)-slice Hm(λ(a), 0(b), −λ(c)) ≡ 0.

Similarly to the slice Hm(λ(a), 0(b), −λ(c)) in the frequency domain
we shall define (a, b, c)-slice in the time domain as
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As the slices depend on one argument, they can be characterized
by the following univariate functions:

H Hm a b c m( , , ) ~ ( )( ) ( ) ( )λ λ λ0 − = ,

h n n h nm a b c m( , , ) ~ ( )( ) ( ) ( )0 − = .

Proposition 2. Let m-th order kernels be defined by their slices
as
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Then there exist the following relations in the terms of Fourier
transform
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4.   NONLINEAR DELTA ±FILTERS

Let's consider a class of nonlinear filters with the impulse
response determined on (a, b, c)-slice. Taking into account the
symmetry of the impulse response hm(n1, ..., nm), this one can be
expressed through discrete delta-function as
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where {•} sym stands for symmetrization by permutation of
indices, involving a!b!c!/m! terms.

We shall denote the nonlinear filter with impulse response (7)

by [ ]F x nm
a b c( , , ) ( )  and name it (a, b, c) delta-filter in the time

domain.

According to proposition 2 the transfer function of the filter
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Thus, the delta filters, being nonlinear, are completely
characterized by one-dimensional functions h(n) and H(ω), that
essentially simplifies their design.

Example.  Quadratic (1,0,1) delta-filter
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with impulse response
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defined on a diagonal n1 = −n2. Frequency properties of this
filter are described by its transfer function
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then H2(ω, ω) = H(0) = 0, and the filter will suppress the second
harmonic, pass DC and the first harmonic with transfer
functions H(2ω), H(ω), respectively.

There are 3 types of the delta-filters of the second order, 5 types
of the third order. Generally, for the m-th order nonlinearity, the
amount of the possible types is given by m + m/2 (m + 1)/2
where m denotes the integer part of the number m.

The (a, b, c) delta-filter of the order m with b ≠ 0 can be
factorized as
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The impulse response of the (a, 0, c) delta-filter in the right part
of (10) is defined on m-dimensional diagonals crossing the
origin. Therefore, we shall name such filter a diagonal filter.
The diagonal filters are nonfactorable and represent some kind
of base elements for construction of the complete set of the
delta-filters. There are (m+2)/2  diagonal filters of the m-th
order.

In view of a time-frequency duality we can also introduce a class
of delta-filters in the frequency domain. The frequency response
Hm(ω1, ..., ωm) of such filters differs from zero only on (a, b, c)-
slice in the frequency domain and is given by
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The corresponding impulse response depends on sum/difference
of arguments
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Thus, each delta-filter [ ]F x nm
a b c( , , ) ( )  in the time domain has its

counterpart [ ]~ ( )( , , )F x nm
a b c  in the frequency domain.

In the frequency domain, it is also possible to extract a set of the
factorable delta-filters, which can be expressed through the
filters of the lower order as follows
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Here, the class of the unfactorable filters consists of (a, 0, c)
diagonal filters with the frequency response determined on m-
dimensional diagonals in the frequency domain.

The implementation of the delta-filter is much simpler than that
of the general polynomial filter. In the time domain, it is
reduced to weighing by h(i) of the input signal samples along
(a, b, c)-slice according to the formula
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In the frequency domain, weighing is carried out over the sums
of sample products located on hiperplanes perpendicular to
(a, b, c)-slice as follows

y n x n j h i
j

b

i

( ) ( ) ( )= −










 ×∑ ∑



× − ⋅ ⋅ − + ⋅ ⋅ +∑ ∑
+

++ + =

+ +�

�

i i
i i i

a a a c

a c

a c

x n i x n i x n i x n i
1

1

1 1( ) ... ( ) ( ) ... ( ) .

The variety of the delta-filters allows us to choose the filter most
suitable for decision of the given task. Since any delta-filter is
completely defined by one-dimensional impulse response h(i), it
is quite possible to reduce the delta-filter design to construction
of a proper linear prototype filter.

5.   DESIGN EXAMPLE

In order to demonstrate the usefulness and simplicity of delta-
filter design using linear prototype filter, as an example, we now
consider a problem of estimation of sine wave signal
parameters.

Let’s take the class of quadratic filters with a sinusoidal input
signal x(n) = Asinλn. According to (5) the integral frequency
response is given by
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The output spectrum involves DC and the second harmonic. It
can be written as
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The desired output signal is DC which would be proportional to
the parameter being estimated. To suppress an undesirable
second harmonic, it is necessary that the slice H2(ω, ω) = 0.
Varying the slice H2(−ω, ω), we can construct the quadratic
filters with various properties. In particular, the following cases
are possible:

(a) if H2(−ω, ω) = α for ω ∈ [0, ωc], that corresponds to low-pass
filtering with cutoff frequency ωc, then the output signal is given
by y1(n) = αA2 and proportional to the input power;

(b) if H2(−ω, ω) = βω for ω ∈ [0, ωc], then the output signal is
given by y2(n) = βA2ω and also proportional to the input
frequency.

As an example we shall investigate the behavior of the FIR
diagonal filter of the type (1,0,1) which is defined by nonlinear
convolution
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The frequency slices can be obtained from (8) as follows
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As mentioned before, H2(ω, ω) = 0 if (9) holds.

In order to obtain the output signal y(n) = βA2ω in the frequency
range [0, ωc], as the prototype we have to use a filter with linear
increasing frequency responseH( )ω  in the range [0, ωc ]. It can

be seen that the relationship between the cutoff frequencies ωc

and ωc  of the quadratic filter and the linear prototype filter is

defined by

ω ωc c= 2 2 .                                         (12)

At the same time in this class of the delta-filters, it is impossible
to construct the filter whose output signal would be y(n) = αA2.
In fact, the requirements H2(−ω, ω) = H(2ω) = α and H2(ω, ω) =
H(0) = 0 are incompatible.

At first sight, as the prototype filter a differentiator with the
frequency response
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could be used. The relevant impulse response is given by
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As this function is antisymmetric, i. e. h(−n) = −h(n), the output
signal y(n) of the (1,0,1) filter vanishes for any input signal x(n).
Therefore, it is impossible to use the differentiator as the
prototype filter.

The decision can be found in a class of linear filters with
frequency response
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In this case, the impulse response is a symmetric function
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For design of the linear prototype filter, a windowing technique
with optimal Kaiser's window of length N = 25 has been used
under the constraint (9). The impulse h(n) and frequency H( )ω
responses of the wide-band prototype filter with maximum
cutoff frequency ω πc =  are shown in Fig. 1. The corresponding

two-dimensional frequency response H2(ω1, ω2) of the quadratic
diagonal filter is shown in Fig. 2. Contours of the response
H2(ω1, ω2) in the frequency domain are lines perpendicular to a
diagonal Q Q

� �
= −  in the time domain along which the impulse

response h(n) of the prototype filter is arranged. According to
(12) the cutoff frequency of the designed quadratic filter is equal

to � �π .

The results of the sinusoidal signal filtering for step and linear
frequency variation are depicted in Fig. 3. The experiment has
shown that the output level depends quite linear on the input

frequency up to the cuttoff frequency ω πc = 2 4 . It is

especially important that the estimation time is considerably less
than a period of the sinusoid. That allows one to use this
approach for a fast parameter estimation of low-frequency
signals.

As it can be seen from Fig. 1(a) the impulse response h(n) is
localized in a small neighborhood of zero, and the main
contribution is made by three samples: central and two lateral,
which are approximately twice as small in magnitude. Leaving
in convolution (12) only these terms, as a special case, we



obtain a well-known Kaiser's nonlinear operator [9]

y n x n x n x n( ) ( ) ( ) ( )= − − +2 1 1

with a kernel H2(ω1, ω2) = 1 − cos(ω1 − ω2). For a sinusoidal
input signal x(n) = Asin(λn + ϕ), the output signal is DC
y(n) = A

2sin2λ ( ≈ A2λ2 for small values of λ). Thus, this operator
can be used as a simple power estimator.

5.   CONCLUSION

In this paper a subclass of polynomial filters with impulse or
frequency responses expressed in terms of delta-functions is
presented. The designing and implementation of these delta-
filters is much easier than in a common case. At the same time
they allow us to find a simple decisions in practice. For the
delta-filter design, methods of linear filter design can be used.
In this case, one-dimensional response of linear prototype filter
is transformed into a multi-dimensional delta-filter response.

It is possible to enumerate all structures of the delta-filters in
the frequency and time domains. Each delta-filter in the time
domain corresponds to dual one in the frequency domain.
Depending on a goal of design we can select the most
appropriate type of delta-filter. As a rule, a obvious
interpretation can be made to the delta-filter being designed. A
simple example has been presented to show the usefulness of
the proposed design technique.
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                               (a)                                      (b)

Figure 1. (a) impulse h(n) and (b) frequency H( )ω
responses of the wide-band prototype filter.

Figure 2. Frequency response of the quadratic (1,0,1)
delta-filter.

      (a)

        (b)

Figure 3. Filtering results: (a) step frequency
variation, (b) linear frequency variation.


