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ABSTRACT

In this paper we will present a series of experiments comparing
the correlation characteristics of two nonlinear data smoothing
methods. Firstly the Recursive Median sieve, a multiscale data-
analysis system, implemented as a cascade of Recursive Median
(RM) filters of increasing window lengths. Secondly a plain
RM filter, applied directly to the original input signal. The
point that we want to make, backed by a number of
experiments, is that the RM filter is not in itself a reliable
estimator of location, and it should not be used in data
smoothing. As the cascading element in the structure of the
sieve, however, the RM filter is very useful. The secondary aim
of the paper is to discuss different methods of describing cross
correlation characteristics.

1. INTRODUCTION

One of the problems arising from the use of  median type
filtering techniques is the phenomenon of streaking. This has
been analysed by Bovik [3]. In image processing streaking can
be identified as an effect that produces runs of equal values in
the output. These runs have no visual correlate with the input.
In 1D streaking produces effects like breakdown of the cross
correlation function. These effects are examined here
experimentally. Median type filters, at least the ones that we
are considering, always produce one of the input samples at the
output, a property not shared by linear systems. This can
sometimes be considered useful, e.g. rounding errors are
avoided, and non-pre-existing sample values are not introduced,
however, problems like streaking can occur.

While Bovik in his paper concentrates on nonrecursive median
filters, both 1D and 2D, we focus on Recursive Median (RM)
filters, which include positive feedback. Although RM filters
have been extensively used in applications, due to some of their
agreeable properties, like robustness, effective noise
suppression and idempotency, it is our conclusion that extreme
care should be taken when RM filters are applied. In fact the
1D RM filter as a location estimate should always be applied in
a cascade construction, the sieve, where the filters are strictly
applied in the order of increasing window lengths. Recently
new analytical results supporting this observation have been
published, see Alliney [1] for a treatment of the Recursive
Median sieve in the framework of regularisation theory, and
Yli-Harja et al. [8] for an analysis of the sieve structure. For an
illustration of the problem of streaking and the solution
provided by the RM sieve, see Figure 1 in the appendix. It must

be emphasised that actually the Datasieve is a much more
general concept [5], and here we only consider the one
dimensional self dual version of it.

2. EXPERIMENTS

We will compare two multiscale signal decomposition structures
with the following experiments. Firstly the Recursive Median
sieve, a  multiscale data-analysis system, using a cascade of
Recursive Median (RM) filters of increasing window lengths.
Secondly a plain RM filter, with a filter window length
equalling that of the last phase of the sieve, applied directly to
the input signal.

We will investigate the properties of the cross correlation
functions, and discuss the alternative ways of defining it. One
such alternative is morphological correlation described by
Maragos [7]. We will also propose a way of defining a useful
measure of correlation, especially suited to signal processing
problems involving median type filters, namely sample selection
probability function. This correlation measure will estimate the
amount of dependence caused by median type filters,
independent of the shape of input distribution.

Thus in our experiments we will consider three correlation
measures, namely linear cross correlation (L2-correlation),
morphological correlation (L1-correlation) [7], and a measure
based on exact equality of samples (EQ-correlation or the
sample selection probability function). In the following we will
introduce them briefly.

Let f(n) be an arbitrary signal and g(n) a pattern to searched
from f. To find the best match, an error criterion such as mean
squared error (MSE) can be minimised
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yielding the classical (sum of products) linear correlation. Using
the mean absolute error (MAE) criterion
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and noticing that |a-b|=a+b-2min(a,b), we can define
morphological correlation [7]
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Normalisation of this measure poses a problem, because the
expected level, when f an g are totally independent, depends on
the shape of the input distribution. In order to limit the scope of
the paper, however, we show L1-correlation in unnormalised
form.

Correlation based on measuring the number of exactly equal
samples, the so called EQ-correlation can be defined by
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where the result of sample-wise comparison is taken to be real 0
or 1.

EQ-correlation is severely handicapped in many situations by
the requirement of exact matching. Still, in the case of
Recursive Median filtering EQ-correlation proves to be useful
because the output will always be one of the input samples, and
there is no possibility of numerical inaccuracy. Also, while our
experiments are implemented with Matlab using double
variables, the probability of two independent and uniformly
distributed random variables having the same value by accident,
is very small. For example in our experiments, the machine
epsilon, (minimum ε such that ( )1 1+ >ε ), being 2.2204.10-

16, the probability for this to happen is negligible. This is, of
course, assuming a good pseudo random number generator.
Furthermore EQ-correlation is totally independent of the shape
of the input distribution, as long as it has no point
concentrations of probability. We can also interpret EQ cross
correlation as a sequence of sample selection probabilities.
Finally, EQ cross correlation manages to produce meaningful
results in cases where L1 and L2 norm correlation measures fail,
(observations 3 and 4).

The test signal employed was a sequence of 2000 independent
and identically distributed samples. The distribution function
was taken to be uniform, Gaussian or Laplacian with zero mean
and unit variance. This signal was then fed to the sieve,
implemented with cascaded RM-filters of increasing window
length, see figure 2(a). The same input signal was also filtered
with RM-filters of increasing window lengths, arranged into a
parallel structure so that the input for each filter was the
original signal, see figure 2(b). The three methods of measuring
cross correlation were used to investigate the dependencies
between the output signal at each scale, and the original signal
and the signal at the previous scale. The results are illustrated in
the appendix.

Finally are the experimental results statistically significant?
This is demonstrated by repeating selected tests 50 times, and
computing the standard deviation. These results are illustrated
in figure 3.

3. CONCLUSIONS

We will next summarise the relevant conclusions in the form of
observations.

Observation 1. L2- and L1-norm cross correlation produce
effectively similar results. See figure 4.

Observation 2. For the cascaded RM-filter sieve all correlation
measures produce easily detectable localised peaks, see figure
5.

Observation 3. For the parallel RM-filter structure L1- and L2-
correlation vanishes for longer filter window lengths, figures 6a
and 6b. This is due to massive streaking.

Observation 4. EQ-norm correlation measure, that is, the
sample selection probability function, describes the behaviour
of the parallel structure meaningfully, figure 6c. Qualitative
interpretation is that the probability of a sample finding its way
to the output from far behind is large.

Observation 5. Sample selection probability function, as well
as other measures, for the sieve converges to a nearly
symmetric function, when scale increases. This is illustrated by
figure 5.

Observation 6. Correlation measured against the signal at the
previous scale of the Recursive Median sieve, is seriously
asymmetric only in the first stage, (3 point RM filter). This
applies to all correlation measures, see figure 7. Recursive
Median filters of longer window lengths, surprisingly, have
nearly symmetric responses.
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APPENDIX

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
- 4

- 3

- 2

- 1

0

1

2

3

4

Figure 1. Illustration of the problem of streaking and
the solution provided by the Recursive Median sieve. a)
Original signal, normally distributed noise, 1000
samples.
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Figure 1b. Original signal filtered with the 13 point
Standard Median filter. Minor streaking.
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Figure 1c. Original signal filtered with the 13 point RM
filter. Massive streaking.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

Figure 1d. RM sieve output at scale 6, (last filter
applied is 13 point RM filter). Minor streaking.
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Figure 2. Illustration of the tested filtering structures.
a) Cascade of Recursive Median filters with increasing
window lengths, i.e. the 1D Recursive Median sieve.
Parallel structure where the input for each RM filter is
the original signal.
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Figure 3. Selected tests repeated 50 times. All tests
employ a 2000 point i.i.d. normally distributed test
signal. This signal is filtered with the specified filter,
correlation with the input signal is computed (with the
specified method), and mean (solid line), and standard
deviation (dotted line), are computed. a) 13 point
Standard Median filter, L2-norm cross correlation.
Compact support and symmetric dependency.
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Figure 3b. 13 point Recursive Median filter, estimated
sample selection probability function. Strongly biased
dependency and the long tail are due to streaking.
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Figure 4a. A 2000 point i.i.d. normally distributed test
signal filtered with the 3 point Recursive Median filter.
Correlation with the input signal is computed with the
method of L2-norm cross correlation (solid line), and
L1-norm cross correlation (dotted line).
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Figure 4.b. Same as above, except that the input signal is
i.i.d. Laplacian.
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Figure 5a. Cascade structure. L2-correlation of scales 1,
2, 4 and 8 with the original, (scale 8 dotted line).
Sharpest peaks belong to the lower scales.
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Figure 5b. Cascade structure. L1-correlation of scales 1,
2, 4 and 8 with the original, (scale 8 dotted line). The
results are not normalised. General appearance is
similar with figure 5a.
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Figure 5c. Cascade structure. EQ-correlation of scales
1, 2, 4 and 8 with the original, (scale 8 dotted line). All
8 sample selection probability functions show easily
detectable peaks, lowering steadily at higher scales.
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Figure 6a. Parallel structure. L2-correlation of scales 1,
2, 4 and 8, (scale 8 dotted line), with the original. At
longer filter windows L2 correlation ceases to give
meaningful results.
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Figure 6b. Parallel structure. L1-correlation of scale 1,
2, 4 and 8, (scale 8 dotted line),  with the original.
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Figure 6c. Parallel structure. EQ-correlation of scales 1,
2, 4 and 8, (scale 8 dotted line),  with the original.
Sample selection probability functions show strong
asymmetry at larger window lengths. This is due to
massive streaking.
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Figure 6d. Parallel structure. EQ-correlation of scale 8,
(RM-filter with window length 17), with the original.
Longest streaks are of the order of hundreds of samples.
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Figure 7a. Cascade structure. L2-correlation of scales 1,
2, 4 and 8, (scale 8 dotted line),  with the previous scale.
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Figure 7b. Cascade structure. L1-correlation of scales 1,
2, 4 and 8, (scale 8 dotted line),  with the previous scale.
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Figure 7c. Cascade structure. EQ-correlation of scales
1, 2, 4 and 8, (scale 8 dotted line),  with the previous
scale. Sample selection probability functions show near
symmetry in all but the first scale, (the 3 point
Recursive Median filter).


