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ABSTRACT

We propose an optimization procedure of stack filters,
which takes into consideration the filter’s sample selec-
tion probabilitites. A statistical optimization of stack
filters can result in a class of stack filters all of which
are statistically equivalent. Such a situation arises in
cases of non-symmetric noise distributions or in the
presence of constraints. Among the set of equivalent
stack filters, our method constructs a statistically op-
timal stack filter, whose sample selection probabilities
are concentrated in the center of its window. This leads
to improvement of detail preservation.

1. INTRODUCTION

Stack filters constitute an important class of nonlin-
ear filters based on monotone Boolean functions [1]. A
design method for stack filters based on minimization
of the mean absolute error was demonstrated in [2].
Statistical properties of stack filters have been studied
in terms of output distributions and moments for i.i.d.
input signals [3],[4],[5]. Consequently, it becomes pos-
sible to optimize stack filters in the mean square sense
[6]. In other words, the knowledge of the input distri-
bution allows one to find a stack filter or a set of stack
filters all of which minimize the output variance. Such
an optimization paradigm is advantageous for several
reasons.

Firstly, it is not necessary to perform a search over
the set of stack filters, the cardinality of which grows
very quickly [7]. Secondly, the optimization procedure
does not suffer from high computational complexity,
since usually a linear programming or quadratic pro-
gramming problem needs to be solved, in which the
dimensionality of the search space is linearly related
to the window width of the stack filter. Finally, vari-
ous constraints can be easily incorporated into the op-
timization framework. For example, structural con-
straints as well as statistical constraints, such as un-
biasedness (in the mean sense), can be easily included.

Moreover, robustness constraints can also be easily ex-
pressed using rank selection probabilities [8].

Rank selection probabilities (RSP) and sample se-
lection probabilities (SSP) are probabilities that the
output equals a sample with a certain rank and cer-
tain time-index in the filter window, respectively. The
output distribution of a stack filter can be expressed
in terms of its RSPs. On the other hand, SSPs give
us information about the temporal behavior of stack
filters [8]. This information is important for examining
the detail preservation properties of stack filters. Effi-
cient spectral algorithms exist for the computation of
the selection probabilities of stack filters [9].

It is well known that the median filter is optimal
among the set of all stack filters for minimizing the out-
put variance when the input distribution is symmetric
and no constraints are imposed [6]. However, in many
situations, a symmetric noise distribution cannot be as-
sumed [10]. Moreover, we may wish to require that the
mean of the output be equal to some particular value,
constituting a constraint. In such cases, the optimiza-
tion results not in one stack filter, but rather in a set
of stack filters all of which are statistically equivalent.
That is, they are all optimal in the sense of minimizing
the output variance and have identical RSPs. There-
fore, the set of stack filters can be decomposed into
equivalence classes, where two stack filters are equiv-
alent if they have the same RSPs and consequently,
output distributions.

More generally, optimization of stack filters can re-
sult in an entire class of stack filters, all of which are
statistically optimal under the chosen criterion. Nev-
ertheless, from a given class of filters, we may wish to
select one filter which is best in some other sense. In
this paper, we propose a method of finding the stack fil-
ter which preserves signal details better than all other
filters in its class. This notion is captured by the filter’s
SSPs.

We begin by noting that detail preservation de-
pends on how much sample selection probability is con-
centrated in the center of the filter window. As an ex-



treme example, the identity filter, which has the best
possible detail preservation, has a probability 1 of se-
lecting the center sample. On the other hand, the me-
dian filter has equal SSPs for each of its samples in
the window. Therefore, among the class of statistically
equivalent optimal stack filters, we wish to select one
filter which has the highest concentration of sample se-
lection probability in the center of the window. Despite
efficient algorithms for computing SSPs for stack filters,
determining the SSPs for each stack filter and then se-
lecting the best one has a major drawback: there may
be an immense number of stack filters in a given equiv-
alence class. This notwithstanding, such an approach
still requires one to generate each stack filter and then
compute its SSPs.

We propose a direct approach which constructs a
filter with the highest concentration of sample selec-
tion probability in the center of the window from the
statistically optimal class of filters. In Section 2, we
give a brief review of statistical stack filter optimiza-
tion as well as present some notation and definitions.
Section 3 discusses the proposed SSP based optimiza-
tion algorithm.

2. BACKGROUND

Let E™ represent the n-cube. The k" level (0 < k < n)
of the cube contains only those vectors with exactly
k components equal to 1 or, equivalently, with Ham-
ming weight w () = k. The set of all vectors on the
Et? level will be denoted by E™F. For any two vec-
tors o, 3 € E™, o« X Bmeans o; < 3, for 1 <i<n. A
Boolean function f : E™ — E! is called monotone (pos-
itive) if for any two primes « and [ such that o < g3,
we have f(a) < f(8). Each stack filters corresponds to
a monotone Boolean function [1]. A continuous stack
filter is obtained by replacing conjunction and disjunc-
tion operations by min and max, respectively. Thus, it
operates on the real-valued domain. For example, the
Boolean function f (x1,x9,x3) = x122 + xoxg (where
- means conjunction and + means disjunction) corre-
sponds to

St (X1, X2, X3) = max {min {X;, Xo} ,min { X5, X3}}

where X7, X2, X3 are real-valued variables. Suppose
that the input variables of some stack filter S (-) are
i.i.d. random variables with distribution

F(t) =Pr{X; <t}
Then, it is well known [5] that the output

Y =8;(X1,...,Xp)

of the stack filter has output distribution

n—1

V()= Ai(l-F@) -F@)"" (1)

=0
where
Ai=|{x e EM: f(x) =0}

This sets the stage for the mean square optimization of
stack filters. The variance py = F {(Y - F {Y})Q} of
the output Y of the stack filter can be written as [6]

n—1 n—1 2
po =AM (F,2,n,i) — (Z A;M (F, 1,n,i)>
=0 i=0
(2)
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So, for a given noise distribution, the goal becomes to
find parameters A; such that the objective function in
(2) is minimized. For non-symmetric (around zero) dis-
tributions, such an optimization results in a whole class
of stack filters all of which are statistically equivalent,
since they all possess the same parameters A;. This
paper is concerned with selecting one among that set
that would result in best detail preservation.

Let s; = Pr{Y = X;} be the jth SSP and s =
[s1,-..,8y] be the vector of SSPs. In [9], it was shown
that S5 = dj (1) - dj (0), where

ww= 3 b)) e

and f~'(k) = {x € E": f(z) =k}. The SSPs cap-
ture the temporal behavior of stack filters and are thus
related to detail preservation capability. A higher con-
centration of probability in the center of the window
leads to better detail preservation.

3. PROPOSED OPTIMIZATION
METHODOLOGY USING SSP

In this section, let us focus on non-symmetric noise dis-
tributions, since it is well known [6] that in the class of
stack filters, the optimal filter for zero-mean symmet-
ric distributions is the median filter. Suppose that the
statistical optimization algorithm, for a given distri-
bution F (t), results in parameters Ag, Ay,---, Ap_1.



This implies that we must select (;:L) — A,, vectors
from sets E™™, m = 0,...,n — 1. Suppose for the
moment that we wish to maximize the SSP s;. Since
sj = d; (1) —d; (0), this corresponds to simultaneously
maximizing d; (1) and minimizing d; (0). Let us rewrite
equation (3) as

- n—1\1"
oS xR
m=0zc f-1()NE™™|z;=k
- 26
m=0 m—k

1
zef~H()NE™™|z=k

S

Heze T MNEY™:a; =k}

So, d; (1) can be maximized by making
Hze Tt (M)NEY" :a; =1}

as large as possible and d; (0) can be minimized by
making

|{:v cft)ynE™™: x; = 0}|

as small as possible. Note that,
|{ac cft()ynE™™: x; = k}| + A, < <ZL> (4)
necessarily holds. Furthermore, observe that

{x e tan E™™Y
= U {z e AN EY ;= k}

ke{0,1}

and

ﬂ {eeft)NE™ 2; =k} =0

ke{0,1}

for any j, which imply that

[{z e f1(1)n B} (5)
= Z |{x€f*1(1)ﬂE”’m:Ij:k}|
ke{0,1}

)

Since A,, is a constant resulting from statistical opti-
mization, it follows from equation (5) that maximizing
d; (1) and minimizing d; (0) is, in fact, the same thing.
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Figure 1: Weight vector for SSP optimization, n = 9.

For a given j and k = 1, the bound in (4) may not
be attained. In that case, it becomes necessary to add
other vectors x € E™"" for which x; = 0. Nevertheless,
our goal is to maximize d; (1) — d; (0) for j as close to
"—'2"—1 as possible, or equivalently, to concentrate as much
SSP in the center of the window as possible. This can
be achieved by the following procedure.

We assign weights v = [v1,...,v,] to each of the
n coordinates of binary input vectors x = [21,... , 2],
with maximal weight in the center and monotonically
decreasing weights toward the ends of the window. Fig-
ure 1 shows a typical weight vector constructed from
a bi-exponential function. However, any similar func-
tion can be used instead. The weight v (z) of a bi-
nary vector & can then be defined as x - v. Further-
more, we define the weight v (2) of a set §2 of vectors
as ) ..o (). We then select the required number of
binary vectors from E™™, as dictated by the param-
eters A,,, with the maximum weight. In other words,
we select a set Q,, C E™™, |Q,,] = (7';) — A, so that
v () is maximum. Even a straightforward sorting
procedure of v (z), x € E™™ is an extremely efficient
way to select the set €2,,. Clearly, this approach pro-
duces those vectors € E™™ which contain more co-
ordinates equal to 1 towards the center of the window.
We now give an example of the proposed optimization
algorithm, showing its effect on SSP and consequently,
detail preservation.

3.1. Optimization Example

Suppose that the input noise density g (¢) is a mixture
of two Gaussian densities f; (¢) and f5 (¢). That is,

gt)=p-frt) + (1 —p) f2(?)
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Figure 2: Histogram of the input noise

In this example, p = 0.7 and the mean and standard
deviation of the two Gaussian densities are

py = Oand o; =03 (7)
y = land oo =0.1

Such a model is often encountered when the noise orig-
inates from two separate sources. The second density,
which has a non-zero mean and small variance, repre-
sents additive impulsive-type noise in addition to the
usual additive zero-mean Gaussian noise modeled by
the first density. Figure 2 illustrates a histogram pro-
duced from this mixture density.

Suppose that we wish to design an optimal stack
filter which would minimize the output variance with
the added constraint of the output being zero-mean.
For our noise distribution, the set of optimal stack fil-
ters with window width n = 9 all of which minimize
the output variance and whose output is zero-mean, is
given by the vector of parameters

A =1[1,9,36,84,126,126,45,0,0,0] (8)

According to equation (2), the output variance of an
optimal stack filter should be p, = 0.0445. The rank
selection probabilities of this filter are: r3 = 0.5357 and
r4 = 0.4643. From this, we see that the filter prefers the
third and fourth ranks, since besides minimizing vari-
ance, it must also maintain zero-mean output. From
(8), we can see that 39 vectors must be selected from
E%5 since 84 —45 = 39. By monotonicity, 27 of the 36
vectors on E%7 get selected. Therefore, we must select
9 more vectors on E%7, for a total of 48 vectors. We se-
lect these vectors according to the procedure described
above so as to maximize detail preservation, using the

Figure 3: SSPs of the optimal filter constructed using
the proposed algorithm

weight vector shown in Figure 1. The resulting vector
of SSPs is shown in Figure 3.

In order to demonstrate the advantages of the pro-
posed algorithm, we considered two statistically equiv-
alent optimal stack filters with the parameters given
in (8). Thus, the two filters have identical RSPs and
output variance. However, one stack filter, referred to
as Filter A, was optimized using the proposed method
and has SSPs as shown in Figure 3. The other stack
filter, Filter B, was constructed without the use of the
algorithm described herein. That is, the minimal vec-
tors were selected randomly on each level of E?. The
SSPs of Filter B are shown in Figure 4. As can be seen

0.14
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Figure 4: SSPs of a stack filter constructed without the
use of the proposed algorithm

from this figure, SSP is not concentrated around the



center of the window. Consequently, we should expect
the detail preservation ability of Filter B to be inferior
to the Filter A. To check this, we applied both filters
to a noisy signal shown in Figure 5. The noise used
was presented above with parameters given in (7). We
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Figure 5: Test signal

compared the MSE of the two stack filters. The fil-
ter constructed using our method, which concentrates
SSP in the center of the window produced an MSE
of 0.1960. Filter B, however, produced a larger MSE
equal to 0.2339. Since both filters were statistically
equivalent, the smaller MSE of Filter A was due to its
superior detail preservation ability.

4. CONCLUSION

We proposed an optimization procedure of stack fil-
ters, which takes into consideration the filter’s sam-
ple selection probabilities. Among the set of equiva-
lent stack filters, our method constructs a statistically
optimal stack filter, whose sample selection probabili-
ties are concentrated in the center of its window. As
an example, we used a mixture of two noise sources
with Gaussian distributions. We demonstrated that
the constructed stack filter leads to detail preservation
improvement. Qur approach is direct in that it is con-
structive. That is, it does not require the computation
of SSPs of each filter in a given equivalence class, and
thus is extremely efficient computationally.
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