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ABSTRACT

Polynomial and rational filters for image enhancement,
edge preserving noise smoothing, and interpolation of en-
coded images are usually designed as a weighted combi-
nation of nonlinear filters having lowpass or highpass be-
haviour. The choice of the filter components and of the co-
efficients is performed heuristically, though.

In this paper general design constraints for polynomial
and rational filters are presented that are necessary to achieve
isotropy, the preservation of the expectation value, and the
detection of edges. For the application of edge preserving
noise smoothing a method is derived to find an optimal poly-
nomial or rational filter that meets these constraints.

1. INTRODUCTION

Polynomial and rational filters have shown to be a suc-
cessful tool for applications in image enhancement, edge
preserving noise smoothing, and interpolation of encoded
images [1, 4, 6, 7, 8, 9]. Their design is usually based on
a weighted combination of nonlinear filters having lowpass
or highpass behaviour where the choice of the filter compo-
nents and of the coefficients is performed heuristically. This
leads to filters that yield convincing results in experiments
but leak a mathematical foundation. Constraints that have
already been derived like the one for the preservation of the
expected output of a uniform luminance [5] are only valid
for special filters.

Here we present some generally applicable design con-
straints that are necessary to achieve certain properties of
polynomial and rational filters. For the derivation of the con-
straints instead of the usual design approach based on low-
and highpass filters we start from a general mathematic de-
scription of a polynomial filter.

2. POLYNOMIAL FILTERS

A general two-dimensional polynomial filter can be de-
fined as

y0,0 = c+
N∑

i,j=−N
wi,jxi,j +

N∑
i,j,k,l=−N

wi,j,k,lxi,jxk,l +

N∑
i,j,k,l,m,n=−N

wi,j,k,l,m,nxi,jxk,lxm,n + . . . (1)

with a constant termc and weighting factorswi,j , wi,j,k,l,
etc. This description comprises all multiplicative combina-
tions up to a certain order between the pixelsxi,j of a filter
mask of size(2N + 1)× (2N + 1). For a filter mask of size
3× 3, i.e.N = 1, the numbering of the filter elements is as
shown in Figure 1.
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Figure 1: Numbering of the filter elements in a3 × 3 filter
mask

3. CONSTRAINTS

3.1. Isotropy

One important desired property of the filter is isotropy. It
can be obtained by using the same coefficients for all prod-
ucts of filter elements in eq. (1), so called monomials, that
are of the same type but have different orientations.

A monomialfm has the formfm := xb1i1,j1 · x
b2
i2,j2
· . . . ·

xbnin,jn with bi ∈ IN . An example of monomials of the same
type in different orientations are the monomialsx2

0,1x1,0,
x2

1,0x0,−1, x2
0,−1x−1,0, andx2

−1,0x0,1. They can be com-
bined additively to one value which is afterwards weighted



with one coefficient:

I13 = x2
0,1x1,0+x2

1,0x0,−1+x2
0,−1x−1,0+x2

−1,0x0,1 . (2)

I13 can also be interpreted as amonomial filter kernel
based on the sum of monomials of third order. Its graphical
visualization is shown in Figure 2.
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Figure 2: Monomial filter kernel for I13

In the same way all other monomials derived from eq. (1)
can be combined to monomial filter kernels. Table 1 shows
as an example the 17 monomial filter kernels based on mono-
mials of up to order three that are only composed of ele-
ments in vertical and horizontal direction with respect to
x0,0 in the3× 3 mask.

The isotropy constraint thus leads to a description of the
filter as a linear combination of monomial filter kernelsIj of
linear and higher order [2]. The output imagey of a general
polynomial filter applied on an imagex can then be written
as

y = x+
n∑
j=1

aj Ij(x) (3)

wheren is the number of monomial filter kernels in the filter
definition. For a rational operator this description yields

y = x+

∑n
j=1 aj Ij(x)∑m
k=1 akIk(x)

. (4)

The separate termx in eqs. (3) and (4) does not restrict
the generality of the expression but facilitates the reason-
ing in the following sections of this paper. The description
based on monomial filter kernels guarantees isotropy and re-
duces significantly the number of filter coefficients present
in eq. (1). In contrast to the heuristically determined filter
descriptions it has the advantage of facilitating the analysis
of the filters and the comparison of different filters.

3.2. Preservation of the expectation value

A further desired filter property is that the expectation
value of an imagex should remain the same for the pro-
cessed imagey = F (x) with the operatorF :

E{y} = E{x} . (5)

In the heuristic filter design this condition is usually
tried to meet by constraining the sum of the coefficients to

be zero [5]:
n∑
j=1

aj = 0 . (6)

However, this is only valid if the expectation values of all
monomial filter kernels are identical. For nonlinear filter
kernels this equation does not hold. As an example the ex-
pectation values of the monomial filter kernels of Table 1
applied to a constant image with valueµ plus zero mean
Gaussian noise with varianceσ2 are given in Table 2.

Order Monomial Mean

1 I1, I2 µ

2 I3, I4 µ2 + σ2

I5, I6, I7 µ2

3 I8, I9 µ3 + 3σ2µ

I10, I11, I12, I13, I14 µ3 + σ2µ

I15, I16, I17 µ3

Table 2: Expectation value of monomial filter kernels ap-
plied to constant images with meanµ distorted with added
Gaussian noiseN (0, σ)

Therefore the correct constraint to fulfill eq. (5) in the
general equation

E{y} = E{x}+ E


n∑
j=1

ajIj(x)


for the expectation value of the filtered image is that the
expectation value of the correction term added to the image
must be equal to zero:

0 = E


n∑
j=1

aj Ij(x)

 . (7)

Thus, an optimal polynomial filter for a given applica-
tion can be designed by adapting the coefficients of the var-
ious monomial filter kernels due to a suitable optimization
criterion under the constraint of eq. (7).

3.3. Edge detection

Another requirement of polynomial and rational filters
for image enhancement applications is a reliable recogni-
tion of edges. For this purpose a highpass characteristic of
the filter expressed by certain relationships between the fil-
ter coefficients is needed. A prerequisite for the derivation
of generally valid constraints is that the expectation values
of the monomial filter kernels are determinable on a formal
basis. However, for nonlinear operators no assumptions can



Order Monomials

1
I1: f1 = x0,0 I2: f2 = x0,1

2

2

2

I3: f3 = x2
0,0 I4: f4 = x2

0,1 I5: f5 = x0,0x0,1

I6: f6 = x0,1x0,−1 I7: f7 = x0,1x1,0

3

3

3

2

I8: f8 = x3
0,0 I9: f9 = x3

0,1 I10: f10 = x2
0,0x0,1

2 2 2

I11: f11 = x0,0x
2
0,1 I12: f12 = x2

0,1x0,−1 I13: f13 = x2
0,1x1,0

2

I14: f14 = x2
0,1x−1,0 I15: f15 = x0,1x0,0x0,−1 I16: f16 = x0,1x−1,0x0,−1

I17: f17 = x0,1x0,0x1,0

Table 1: Monomial filter kernels based on monomials of up to order three

be made for an arbitrary distorted image [3]. As a conse-
quence constraints can only be derived for linear filter ker-
nels. A possible constraint to assure the detection of edges
consists in applying a weighting of the linear monomial fil-
ter kernels in such a way that their linear combination shows
the characteristic of a Laplace operator. For the scheme of
filter kernels of Table 1 this constraint yields

−4a1 = a2 . (8)

For rational operators this constraint has to be fulfilled for
the monomial filter kernels in the numerator.

4. EXPERIMENTAL RESULTS

For edge preserving noise smoothing the aim is to min-
imize the perceived difference between the filtered noisy
imagey and the original undistorted images. It can be
achieved by minimizing the mean square error between these
two images. This optimization criterion by itself applied on
filters according to eq. (3) or eq. (4) already leads to an ap-
proximation of the expectation value of the difference image
towards zero:

minimizeai

∑
(y(ai)− s)2

#pixel
⇒ E{|y(ai)− s|} → 0 . (9)

To show that this optimization criterion is already suffi-
cient to fulfill the condition of eq. (5) experiments are per-



a) pear b) distorted, SNR 9 c) filtered with a rational operator

Figure 3: Image “pear” filtered with an optimized rational filter kernel

method mean square error
polyn. filter based on 9 monomial filter kernels, unconstrained 233
polyn. filter based on 9 monomial filter kernels, eq. (7) 233
polyn. filter based on 9 monomial filter kernels, eq. (6) 234
polyn. filter based on 17 monomial filter kernels, unconstrained 227
polyn. filter based on 17 monomial filter kernels, eq. (7) 227
polyn. filter based on 17 monomial filter kernels, eq. (6) 233
rational filter, unconstrained 203
rational filter, eq. (7) 203
rational filter, eq. (6) 220

Table 3: Mean square error for the application of polynomial and rational filters on the image “pear”

formed on a real gray value image “pear” with added zero
mean Gaussian noise (SNR=9). We apply different polyno-
mial and rational filters three times to increase the smooth-
ing ability. The obtained mean square error is given in Ta-
ble 3 for the unconstrained optimization, the optimization
under the constraints of eq. (6), and of eq. (7) for a polyno-
mial filter based on 9 and 17 monomial filter kernels, and a
rational operator with a cubic polynomial in the numerator
and a quadratic polynomial in the denominator.

Figure 3 c) presents the result for the rational filter in
comparison to the original image and the distorted one. The
edge preservation and the smoothing ability are clearly vis-
ible.

All filter outputs yield the desired expectation value of
E{|y−s|} ≈ 0. No visible difference can be recognized be-
tween the results of the optimization with the mean square
error criterion without constraints and the constraint of eq. (7).
The obtained mean square errors are the same. Moreover
these mean square errors are lower than those achieved with
the unfounded constraint of eq. (6) for all tested edge pre-
serving noise smoothing filters. The improvement is most
evident for the rational operator.

Experiments with different images have also shown that
in most cases the minimization of the mean square error be-
tween the filtered noisy imagey and the original undistorted

images satisfies the constraint of eq. (8) for edge detection,
too. Nearly equal values for the coefficients−4a1 anda2

are derived, respectively. However, it can be observed that
for images containing just a small number of edges a min-
imum for the mean square error is found with values for
the coefficients that do not satisfy eq. (8). As an example
Table 4 shows the values for the coefficientsa1 anda2 ob-
tained from the optimization of the unconstrained versions
of the three different above mentioned filters on the image
“pear”.

For a comparison the derived mean square errors after
a single application of these filters with the results of the
same filters where the constraint of eq. (8) is explicitly ap-
plied are given. Although the values for the two coefficients
for the unconstrained version of a polynomial filter based
on 17 monomial filter kernels differ significantly from each
other the improvement of the obtained mean square error
with respect to the constrained version of the same filter is
only neglectable.

Thus, the proposed unconstrained method of minimiz-
ing the mean square error applied for edge preserving noise
smoothing in most cases yields a satisfaction of the design
constraints derived for polynomial and rational filters. For
images with few edges the constraint of eq. (8) may not be
satisfied but without significantly improving the quality of



method 4a1 a2 mean square error
polyn. filter, 9 mon. filter kernels, unconst. -0.089 0.089 278
polyn. filter, 9 mon. filter kernels, eq. (8) -0.089 0.089 278
polyn. filter, 17 mon. filter kernels, unconst.-0.161 0.101 269
polyn. filter, 17 mon. filter kernels, eq. (8) -0.149 0.149 271
rational filter, numerator unconst. -0.103 0.098 230
rational filter, numerator eq. (8) -0.104 0.104 231

Table 4: Values of the coefficientsa1 anda2, and mean square error for the application of polynomial and rational filters once
on the image “pear”

the filtered image in terms of the mean square error. Sum-
marizing the experiments have shown that the derived con-
straints are suitable for the design of polynomial and ratio-
nal filters with certain defined properties.

5. CONCLUSION

General constraints for the design of polynomial and ra-
tional filters have been derived. These constraints guarantee
isotropy, the preservation of the expectation value of the fil-
tered image, and the detection of edges. These are desired
characteristics of these filters for image processing applica-
tions.

For the application of edge preserving noise smoothing
a method has been presented to find an optimal filter that
meets the derived constraints for most images. It consists in
the unconstrained optimization of the coefficients of a poly-
nomial or rational filter with respect to the minimization of
the mean square error between the noisy image and the orig-
inal image.
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