
A NEW FAST METHOD FOR TRAINING STACK FILTERS

Ioan T�abu�s and Bogdan Dumitrescu

Signal Processing Laboratory, Tampere University of Technology

P.O. Box 553, SF-33101 Tampere, Finland

e-mail: tabus@cs.tut.�

ABSTRACT

In this paper we introduce a new procedure for
stack �lter design with respect to MAE optimality
criterion. While the procedure is only suboptimal,
it di�erentiates from the existing methods by be-
ing extremely fast on sequential computers. Up
to window length 19 this is by far the most eÆ-
cient method, being an order of magnitude faster,
while providing a MAE with only 0:1% greater
than other existing methods.

Experiments performed on a normal worksta-
tion (Sun Ultra 1) shows that for a 512�512 image
the execution time is less than a couple of seconds,
for a 17 pixel window.

1. INTRODUCTION

The optimal or adaptive stack �lter design with
respect to MAE criterion was extensively studied,
well motivated methods being presented in [1], [2],
[3], [4], [7], [8]. While the principles are well estab-
lished, the associated procedures encounter several
practical diÆculties, one of the most important be-
ing the design time, and the second the course of
dimensionality, which makes the design next to im-
possible when using common computers, for tem-
plates larger than 22 pixels. We discuss here two
recent methods for stack �lter design, and pro-
pose a third one which proves much faster than
the others, for a certain range of template sizes.
We also �nd a partial remedy for the dimension-
ality issue by addressing another important issue,
that of training set size, in connection with the size
of the window. We show that extending the size
of the training set, the design becomes not only

more relevant for using the �lter on a similar data
set, but also makes the design stage better condi-
tioned, and as a result the design time decreases
considerably.

2. OPTIMAL STACK FILTER DESIGN

USING TRAINING DATA

The existing methods referred here are those in
[2], [7] which provide the most eÆcient results re-
ported up-to-date. Both procedures start from
the training set containing a clean signal and a
corrupted version of it. The �rst step is to ex-
tract from the training set the suÆcient statistics
needed in the cost computation. The cost is the
average of absolute erors between the clean sig-
nal and the �ltered signal, denoted in the follow-
ing MAE. The suÆcient statistics are referred to
as cost coeÆcients and denoted c(v) where v 2
f0; 1gN . The cost coeÆcients can be computed
in a very eÆcient way as presented in [7]. Latter
we will present an even more eÆcient way, using
running sorting of the values of the pixels in the
template. For a stack �lter corresponding to a
positive Boolean function f+, MAE(f+) can be
evaluated as

MAE(f+) = C0 +
X

v2f0;1gN

f+(v)c(v): (1)

After the cost coeÆcients are computed, the
procedures in [2], [7] select di�erent approaches
for �nding the positive Boolean function f+ min-
imizing (1).

In [2], a decision vector Dopt is initialized with
the vector of cost coeÆcients Dopt(v) = �c(v).
Then an iterative process start. Using a given

scanning order of the entries, those entries vio-
lating the stacking relationship are modi�ed, such
as the stacking property is restored. To continue
the process, the cost coeÆcients are subtracted
fromDopt(v). If no violation of stacking constraint
has occured, the iterations stop, and the positive
Boolean function is obtained comparing the en-
tries of Dopt to zero, and deciding f+(v) = 0 if
Dopt(v) < 0 and f+(v) = 0 otherwise. This itera-
tive algorithm is very well suited to be performed
in parallel, as shown in [2]. In sequential imple-
mentation the method is expensive due to the ne-
cessity to add cost coeÆcients even outside the
undecided set.

In [7] the cost vector is used to �nd a Boolean
function, and then two sets of binary vectors I1,
decided to 1, and I0 decided to 0 are constructed.
The undecided binary vectors are further processed,
using an iterative procedure, denoted there Step
III.5. If the template is not too large (say, less than
13 pixel wide), the exact linear programming (LP)
solution can be computed. The time required by
the training of the stack �lter is small compared
to the computation of coeÆcients. However for
larger windows, LP cannot be computed, and the
output of the algorithm is therefore the output of
Step III.5. We propose here to replace the itera-
tive procedure Step III.5 with a more eÆcient one,
in view of obtaining better results on the range of
windows 13-19 pixel wide.

In the following we are using the notations in-
troduced in [7], to which the reader will refer for
more details on various ways of stating the train-
ing problem.

2.1. The new algorithm

We observe that in Step III.5 of FASTAF algo-
rithm [7], which is by far the dominant cost in the
procedure, two actions are repeteadly performed:
�rst set to 1 the group of vectors stacking under v
having overall negative cost, and second, set to 0
the vectors stacking over v if their overall cost is
positive. The improvements in the cost obtained
by this heuristic are signi�cant, but the time to
perform iteratively these two steps over the unde-
cided set, Iu, is often very large.

We propose here to use a di�erent approach, to
set to 1 groups of vectors (from the undecided set
Iu) stacking under v having overall negative cost
and immediately to delete them from Iu. But we
have to decide to 1 only the \safe" group of vec-
tors with overall negative cost, i.e. to gradually
grow groups of units starting from the bottom of
the undecided set. This will render unnecessary,
in the majority of cases, the second iteration from
FASTAF III.5, of setting to 0 some groups of vec-
tors, and therefore we may declare decided all the
vectors to be set to 1. The undecided set will go
diminish along the iterations, making the growing
of units in the undecided set extremely eÆcient.
The \safe" groups of pixels to be set to 1 will be
determined using the heuristics explained below.

In order to have the undecided set organized
by levels in the Hasse diagram, we �rst determine
the sets of undecided binary vectors with the same
Hamming weight, wH(x) = k, as Iuk = fx 2
IujwH(x) = kg and denote kmin, kmax the min-
imum respectively maximum k for which Iuk 6= ;.

The heuristics of the new algorithm are the
following:

1. Include in the set decided to 1, I1, a \safe"
group of vectors stacking under v, including
v, with overall negative cost. This is equiva-
lent to adding one minterm at a time to the
disjunctive-conjunctive form of the boolean
function, but what is essential, this minterm
has to correspond to the smallest group of
vectors which are worth adding.

Algorithmic description: Start from the next
to lowest level, kmax�1, of the undecided set
in the Hasse diagram. For a vector v in the
set Iukmax�1 with a negative cost, compute
the cost of putting to 1 all vectors w 2 Iu
stacking under the vector v. If this cost is
negative, then put to 1 all w's stacking un-
der the vector v and delete them from the
undecided set Iu. Continue with nodes in
the upper level in Hasse diagram until the
upper level kmin is processed as well.

2. Include in the set decided to 1, I1, a \safe"
group of vectors stacking under v, excluding

v, with overall negative cost. This is equiv-
alent to adding more minterms at the same
time to the disjunctive-conjunctive form of
the boolean function, and again we will se-
lect the groups in increasing order of their
cardinality.

Algorithmic description: Start from the sec-
ond next to lowest level, kmax�2, of the un-
decided set in the Hasse diagram. For a vec-
tor v in the set Iukmax�2 (no matter the sign
of its cost), compute the cost of putting to 1
groups of sons of v. Select the largest group
of sons having negative overall cost. Then
put to 1 all w's stacking under the selected
sons of the vector v and delete them from
the undecided set Iu. Continue with nodes
in the upper level in Hasse diagram until the
upper level kmin is processed as well.

In Figure 1 we list the new algorithm, using
the notations from [7]. A single new notation
is needed: Wdown(Sons) is the set of all vectors
stacking under the vectors in the set Sons.

The fast evaluation of the cost in Costdi� is
realized by a recursive procedure which computes
recursively in the levels of Hasse diagram the cost
of descendents of v, and marks the descendents
which have already contributed to Costdi� (note
that some descendens of v are common descen-
dents of sons of v, since Hasse diagram is not a
tree).

3. EXPERIMENTAL RESULTS

3.1. Fast computation of cost coeÆcients

The pixels in a sliding window may be put into
two categories. Some of them, say no, are inher-
ited from the previous window; the others, a num-
ber of nn = N � no of them, appear for the �rst
time in a window. In order to eÆciently update
the costs, pixel values must be ordered; an algo-
rithm which sorts all the N pixels is obviously not
appropriate since the no values from the previous
window are already sorted. The problem of sort-
ing values in a sliding window is known as running
ordering and Pitas [6] gave an eÆcient solution by
insertion: each of the new nn values is inserted

in the ordered list containing initially no values;
this algorithm performs a small number of com-
parisons, about O(nn logN), but is rather costly
in memory shifts (O(N2 � n2o)). An other possi-
bility is to sort separately the new nn values, and
then to merge the old and new values; the cost is
O(N + n2n) comparisons and memory shifts. We
present in table 1 the theoretical values for the
usual case nn = O(

p
N) and some experimental

times for usual window sizes; for comparison, the
third column shows the times obtained when all
values were sorted from scratch; all times were ob-
tained on a 512 � 512 image Air�eld, corrupted
at 6dB with contaminated Gaussian distribution,
with contamination 0.1 [7]. It can be noticed that
the \sort and merge" variant gives the best results.

3.2. Training the stack �lter

We compare in Table 2 the results of 4 proce-
dures. The �rst, FASTAR is an improved version
of FASTAF, where the solution is computed recur-
sively in the size of the window; the implementing
program was available starting from August 1997
at [5]. The second is an improved version of the
former, FASTAR�, making use of recursive proce-
dures for evaluating the cost of the minterms to be
added. The third is the new procedure introduced
in this paper, and the fourth is our implementation
of TRAIN[2].

In Table 3 we compare the results of the new
procedure and of TRAIN[2], for larger window
sizes, when we increase the size of the training
set, by keeping the same clean (target) image, but
provide many corrupted versions of it. We observe
that extending the size of the training set the de-
sign stage is better conditioned, and as a result
the design time decreases considerably.

4. REFERENCES

[1] E. J. Coyle and J.-H. Lin. Stack �lters and the
mean absolute error criterion. IEEE Transac-

tions on Acoustics, Speech and Signal Process-

ing, ASSP-36:1244{1254, Aug. 1988.

[2] K.L. Fong, G.B. Adams III, E.J. Coyle, and
J. Yoo. Synthesis of a parallel optimal stack

Running ordering Usual sort
N nn Insertion Sort + merge

13 5 8.95 8.58 10.24

15 5 10.23 9.60 12.43

17 5 11.57 10.92 14.90

19 5 13.60 12.50 18.04

21 5 15.34 13.97 21.24

Theoretical complexity for N = O(n2n):

O(n2n) nn
O(nn log nn) comparisons
O(n3n) memory shifts

O(n2n) comparisons
O(n2n) memory shifts

O(n4n) comparisons
O(n4n) memory shifts

Table 1: Complexity and experimental times (in seconds) for running ordering.

III.5.0 Determine the sets Iuk = fv 2 IujwH(v) = kg and indices kmin, kmax.
III.5.1 Do

Improve = 0
For k = kmax � 1 : �1 : kmin

For all v 2 Iuk with c(v) < 0
Costdi�(v) =

P
x2Iu

x�v
c(x)

If Costdi�(v) < 0
For all x 2 fxjx � vgT Iu

f+(x) = 1; Iuk Iuk � fxg; Improve = 1
until (Improve = 0)

III.5.2 For k = kmax � 2 : �1 : kmin

For all x 2 Iuk
Sons = ;
For all v 2 Hdown(x)

Sons = Sons
Sfvg

Costdi�(Sons) =
P

w2Iu
T

Wdown(Sons)
c(w)

If Costdi�(Sons) < 0
For all w 2Wdown(Sons)

T
Iu;

f+(w) = 1; Iuk Iuk � fwg
Sons = ;

Figure 1: The new algorithm for deciding the nodes in the undecided set of the Boolean function f . The
Steps I,II,III1.-III4. are the same as in FASTAF algorithm [7].

N = 13 N = 14 N = 15 N = 17

FASTAR (MAE
time)

7:955
1:45

7:888
10:6

7:855
93:4

7:725
4200

FASTAR� (MAE
time)

7:955
0:63

7:888
0:71

7:855
3:50

7:725
1340

New algorithm (MAE
time)

7:955
0:22

7:887
0:41

7:856
0:70

7:727
137

TRAIN[2] (MAE
time)

7:955
0:59

7:887
3:40

7:855
14:22

7:718
337

Table 2: Performance and time complexity for four procedures designed on the image Air�eld corrupted
at 6 dB.

N = 15
nim = 10

N = 17
nim = 20

N = 19
nim = 40

N = 21
nim = 80

New algorithm (MAE
time)

7:434
0:28

7:485
1:89

7:436
51:4

7:379
5700

TRAIN[2] (MAE
time)

7:434
6:92

7:484
129

7:434
613

7:376
2740

Table 3: Performance and time complexity for two procedures designed on the training set formed by
the clean Air�eld image and nim versions of it, each corrupted at 6 dB.

�lter training algorithm. In NSIP'97, IEEE

Workshop on Nonlinear Signal and Image Pro-

cessing, Mackinac Island,Ma, USA, Sep. 1997.

[3] J.-H. Lin and Y.-T. Kim. Fast algorithms for
training stack �lters. IEEE Transactions on

Signal Processing, SP-42:772{781, April 1994.

[4] J.-H. Lin, T.M. Sellke, and E.J. Coyle. Adap-
tive stack �ltering under the mean absolute er-
ror criterion. IEEE Transactions on Acoustics,

Speech and Signal Processing, ASSP-38:938{
954, June 1990.

[5] A package for stack �lter design. http:
//www.cs.tut.�/�tabus/course//stack design.html.

[6] I. Pitas. Fast algorithms for running order-
ing and min/max calculation. IEEE Trans-

actions on Circuits and Systems, 36:795{804,
June 1989.

[7] I. T�abu�s, D. Petrescu, and M. Gabbouj. A
training framework for stack and Boolean
�ltering-Fast optimal design procedures and

robustness case study. IEEE Transactions on

Image Processing Special Issue on Nonlinear

Image Processing, IP-5:809{826, June 1996.

[8] B. Zeng, M. Gabbouj, and Y. Neuvo. A uni�ed
design method for rank order, stack and gen-
eralized stack �lters based on classical Bayes
decision. IEEE Transactions on Circuits and

Systems, CAS-38:1003{1020, Sept. 1991.

