
VERY EFFICIENT IMPLEMENTATION OF MAX/MIN FILTERS

Dinu Coltuc and Philippe Bolon

LAMII-ESIA, University of Savoie,
41, Av. de la Plaine, P.O. BOX 806, 74016 Annecy, FRANCE

e-mail: (coltuc, bolon) @ esia.univ-savoie.fr

ABSTRACT

Implementation of fast and low-cost running max/min
with only 3 comparator circuits is addressed. An algo-
rithm of less than 3 comparisons per sample complexity
is proposed and its implementation is discussed. The
algorithm uses a data-block processing scheme where
each window is split in two sub-windows. The max-
imum (minimum, respectively) in each sub-window is
computed, step by step, by one comparison between
an input sample and the maximum of an adjacent sub-
window. Furthermore, �nal results are obtained by one
more comparison each one.

1. INTRODUCTION

The interest for fast running max/min algorithms is
due to their use in mathematical morphology (dila-
tion and erosion of graylevel images are local max and
min, respectively) as well as in certain low-level image
and signal processing tasks. The fastest algorithms for
max/min computation reported in the literature en-
tails, regardless the size n of the �lter window, the
extremely low complexity of less than 3 comparisons
per sample [1, 2]. They perform the computation on
blocks of data and, for each block, only 2 output re-
sults are fully computed (step by step) from the input
operands, while the other output results are immedi-
ately obtained by a single comparison between already
available intermediate results. There is a di�erence in
performance between these algorithms due to the se-
lection of the data block size which yields a slightly
lower complexity of 3 � 6=(n + 1) [2] compared with
3 � 4=n in [1]. We mention that both algorithms are
independent of data distribution and yield regular and
periodic
owgraphs for any size of the �lter window.
Flowgraphs regularity and periodicity are of great in-
terest when hardware implementations are in view. Be-
sides, the computational complexity of such algorithms
clearly suggests the possibility to derive, for any win-
dow size, fast architectures with only 3 comparison cir-
cuits.

Analyzing both algorithms, we have noticed that
the computation
ow is not perfectly regular. The pro-
cessing for the �nal results is position dependent being
computed either from already available partial results
or, step by step, from the input operands. In order to
eliminate this drawback, we propose a slightly modi-
�ed algorithm. While still less than 3 comparisons per
sample, i.e., 3�2=(n�1), the mathematical complexity
of the new scheme is slightly lower than those of the
above mentioned algorithms. On the other hand, the
derived
owgraph yields a more e�cient implementa-
tion. The paper presents the modi�ed algorithm and
discusses its implementation.

2. FAST ALGORITHM

Let fxi; i = 1; 2; . . . ; g be the input sequence. We shall
refer only to the maximumcomputation; the minimum
computation problem is equivalent. The output of the
1D running max �lter within a window of size n is
the sequence fyi; i = 1; 2; . . .g, where each yi is the
maximum of n consecutive samples:

yi = max(xi; xi+1; . . . ; xi+n�1) (1)

The basic idea of the algorithm is to obtain se-
quences of partial results, namely maximum values on
sub-windows, such that they can be further used for
the very fast computation of n� 1 output results. Be-
fore giving the general algorithm, we brie
y describe
the computation scheme for the particular case of a
window n = 5.

The output sequence, when n = 5, is:

y1 = max(x1; x2; x3; x4; x5) (2)

y2 = max(x2; x3; x4; x5; x6)

y3 = max(x3; x4; x5; x6; x7)

y4 = max(x4; x5; x6; x7; x8)

y5 = max(x5; x6; x7; x8; x9)

y6 = max(x6; x7; x8; x9; x10)

...

The straight computation of the maximum value of 5
samples needs 4 comparisons [3]. Since, for consecu-
tive output values, 4 operands out of 5 are common,
the idea of computation
ow optimization in order to
take advantage of common operands naturally appears.
Thus, it is expected that the complexity of the running
maximum is considerably lower than that of a single
maximum computation.

Let be the �rst 4 output results computed as fol-
lows:

y1 = max(max(x1; x2; x3; x4); x5) (3)

y2 = max(max(x2; x3; x4);max(x5; x6))

y3 = max(max(x3; x4);max(x5; x6; x7))

y4 = max(x4;max(x5; x6; x7; x8))

The next step is to observe that the computation of the
inner operands can be further detailed to take advan-
tage of common partial results. Thus, the �rst operand
which appears in the computation of y1 can be evalu-
ated as:

max(x1; x2; x3; x4) = max(x1;max(x2; x3; x4)) (4)

by means of a single comparison between an input sam-
ple (x1) and an operand which appears in the compu-
tation of y2. Furthermore:

max(x2; x3; x4) = max(x2;max(x3; x4)) (5)

which uses max(x3; x4), an operand which appears in
the computation of y3 and whose computation needs
only one comparison.

Similarly, the second operands in (3) can be evalu-
ated step by step, with only 3 comparisons, such that,
each step, an input sample is compared against a par-
tial result and the maximum is propagated. Thus, the
partial results are: max(x5; x6), max(max(x5; x6); x7),
max(max(x5; x6; x7); x8).

Remark: There is a di�erence between the computa-
tion of the inner operands in (3); the inner left operands
are computed in the reverse order of the index of the
input samples, namely: x4; x3; x2; x1, while the inner
right ones in the normal order: x5; x6; x7; x8.

After the �rst 4 output results are obtained, the
next group of 4 are computed and, so on. The com-
putational complexity of the proposed scheme follows
by counting the number of comparisons for the com-
putation of 4 output results, namely 4 comparisons to
obtain the �nal results and two times 3 comparisons
to get the partial results. This yields a computational
complexity of 2.5 comparisons per sample.

2.1. The general case

The algorithm considers the computation of groups of
n�1 results and starts the processing with 2n�2 input
samples. The data block is split in two equal groups
of consecutive samples, namely fx1; x2; . . . ; xn�1g and
fxn; xn+1; . . . ; x2n�2g.

For the group of partial results computed in de-
scending order, one starts from tail to head with xn�1,
the last sample in the group. Each step i, i = 1; . . . ; n�
1, a comparison is done between an input sample and
the maximum found in the previous step. We denote
each result, i.e., the maximum of a consecutive group
of samples, by dk;j, where the subscripts k and j are
the �rst and the last index in the group. Since for the
�rst group of n � 1 samples j = n � 1, one has:

dk;n�1 = max(xk; xk+1; xk+2; . . . ; xn�1) (6)

The �rst subscript k is related to the step i of the com-
putation (in each group) by k = n � i. Thus, the �rst
result of the sequence is:

dn�1;n�1 = xn�1 (7)

For i = 2; . . . ; n� 1, one has:

dn�i;n�1 = max(xi; dn�i�1;n�1) (8)

The complete sequence of sub-windows is processed one
by one doing a single comparison per result.

For the second group (ascending order), the compu-
tation is performed from head to tail starting with xn,
the �rst sample in the group. Let the partial results be
an;q. The sequence of partial results follows by taking:

an;n+i�1 = max(an;n+i�2; xn+i�1) (9)

where, for i = 1, the �rst partial result is:

an;n = xn (10)

As above, each result in the sequence is:

an;n+i�1 = max(xn; xn+1; xn+2; . . . ; xn+i�1) (11)

where 1 � i � 2n � 2. Obviously, each step demands
only one comparison.

Next, the output sequence immediately appears as:

yi = max(di;n�1; an;n+i�1) (12)

Otherwise stated, the �nal results are obtained with
only one comparison between partial results.

The computation continues periodically for groups
of n� 1 results by �nding, as above, di;2n�1, a2n;q and
so on.

-

-

-

�
�
�
�
��

H
H
H
H
HH

In

C R Out

Figure 1: Partial results computation; block diagram.

The computational complexity of the modi�ed al-
gorithm follows by counting the number of compar-
isons/sample needed for each group of n � 1 output
values. Thus, n � 2 comparisons are needed to com-
pute di;j terms, other n� 2 comparisons for dp;q terms
and, �nally, n � 1 comparisons for the output results.
Therefore, we have:

C(n) =
3n� 5

n� 1
= 3�

2

n � 1
(13)

As it can be seen, in terms of computational complex-
ity, the algorithms reported in [1, 2] slightly outper-
forms the modi�ed algorithm. The di�erence is due to
the size of data-block considered in the computation.

3. IMPLEMENTATION

The processing is naturally split in 3 parts: 1) compu-
tation of partial results (ascending order); 2) computa-
tion of partial results (descending order); 3) computa-
tion of �nal results.

3.1. Computation of partial results

The computation of each sequence of partial results
can be implemented by a simple closed loops scheme
[4, 5]. The input operands are delivered, each clock cy-
cle, one by one, on the data input In (Fig. 1). The C
block delivers at the output the maximum of the input
operands. The R block is simply a feed-back regis-
ter. The C block can be implemented by a multiplexer
whose output is selected by a comparator.

Let us consider the computation of the �rst se-
quence of di;j results. We suppose that the feed-back
register is set to "0" prior to the �rst clock. At the
rising edge of the �rst clock cycle, xn�1 is at input;
at the output of the comparator, one has the result of
the comparison between xn�1 and "0", i.e., xn�1, re-
sult which is stored, on the falling edge of the clock
tick, in register R. At the rising edge of the second
clock tick, xn�2 is input. Now, the output of the
comparator has the result of the comparison between

-

-

-

�
�
��

H
H
HH -

-

-

-

�
�
��

H
H
HH -

-

-

�
�
��

H
H
HH-

In1
C1 R1 M1

In2
C2 R2 M2

C3 Out

Figure 2: Running max/min architecture.

xn�2 and the content of the feed-back register (xn�1),
namely max(xn�1; xn�2), result which over-writes the
feed-back register. Thus, after n � 1 clock ticks, the
feed-back register contains max(x1; x2; . . . ; xn�1).

To obtain the partial results for the next group of
samples, the procedure goes on identically, taking care
to set to "0" the feed-back register before the �rst com-
parison.

The scheme computes the partial results in ascend-
ing or descending order, depending on the order of the
sequence of input operands.

3.2. Computation of �nal results

Each �nal result requires only one comparison between
two already computed partial results. Thus, the �nal
results are obtained by a C block feed-on with the par-
tial results given in the appropriate order.

The two sequences of partial results (ascending and
descending order) can be computed in parallel. There-
fore, the algorithm can be implemented by a two-stage
scheme: one stage for the computation of partial re-
sults and the other for the computation of �nal results.
A block diagram of the proposed architecture is shown
in Fig. 2. Thus if the input operands are provided in
the appropriate order, C1 delivers each clock cycle a
di;j result, while C2 an ap;q one. Furthermore, the par-
tial results are stored in the memory bu�ers M1 and
M2. The size of the memory bu�ers is of n�1 samples
each one. Feedback registers should be cleared each
n � 1 clock cycles. The output result is computed by
C3 which receives the appropriate inputs fromM1 and
M2. Data dependencies and the
ow of operands for a
window of size 5 is presented in Table 1.

The algorithm and, consequently, its implementa-
tion refers to 1D running max/min. The straight ex-
tension to the 2D case does not hold since, for consec-
utive window positions, there are more than one di�er-
ent samples which appear. For instance, in the case of

Table 1: Snapshot of data
ow and dependence (n = 5).

Clock In1 In2 R1 R2 M1 M2 Output

1 x4 x5 0 0 d4;4 a5;5
2 x3 x6 d3;4 a5;6
3 x2 x7 d2;4 a5;7
4 x1 x8 d1;4 a5;8
5 x8 x9 0 0 d8;8 a9;9
6 x7 x10 d7;8 ! d1;4 a9;10 ! a5;5 y1 = max(d1;4; a5;5)
7 x6 x11 d6;8 ! d2;4 a9;11 ! a5;6 y2 = max(d2;4; a5;6)
8 x5 x12 d5;8 ! d3;4 a9;12 ! a5;7 y3 = max(d3;4; a5;7)
9 x12 x13 0 0 d12;12! d4;4 a13;13! a5;8 y4 = max(d4;4; a5;8)
10 x11 x14 d11;12! d5;8 a13;14! a9;9 y5 = max(d5;8; a9;9)
11 x10 x15 d10;12! d6;8 a13;15! a9;10 y6 = max(d6;8; a9;10)
12 x9 x16 d9;12 ! d7;8 a13;16! a9;11 y7 = max(d7;8; a9;11)
13 x16 x17 0 0 d16;16! d8;8 a17;17! a9;12 y8 = max(d8;8; a9;12)

2D running max/min in a n�n rectangular window, n
samples (one column) change for adjacent windows (on
row direction). A 2D approach by passing in n steps
from one window to another has been discussed in [5];
its major drawback is the severe loss in performance
since only one result out of n computed ones is valid.
The solution, in most 2D cases, is to take advantage of
separable windows (and the rectangular ones are) by
�ltering in two passes, an 1D �ltering on rows followed
by an 1D �ltering on columns.

3.3. Variable window size

A hardware processor for running max/min for a �xed
window size is obviously of very limited interest since
the window size is a
exible parameter in �ltering as
well as in mathematical morphology.

The extension of the implementation for a range
of window sizes is straightforward. The architecture
does not change, i.e., regardless the window size, one
needs exactly 3 comparison processing units. Changes
will be in the capacity of bu�er memories (M1 and
M2) including addressing logic and timing. Thus, the
bu�ers should be designed for the maximum window
size (N � 1 memory cells for a window size N). For
any window n � N , the processor works as described
above by changing only the data addressing and the
command timing. While the output rate of the pro-
cessor is constant, obviously, the latency depends on n
(the �rst result is obtained after n + 1 clock cycles).

4. CONCLUSIONS

A fast low-cost implementation for running max/min
�lters using only 3 comparators regardless the window
size has been presented. The implementation is derived
from a very fast algorithm of less than 3 comparisons
per sample complexity. The fast algorithm is optimized
to yield a balanced
ow of operations. Implementation
for programmable window sizes follows immediately by
changing only the timing diagram and the addressing
logic.

5. REFERENCES

[1] J. Gil, M. Werman, "Computing 2-D Min, Median and
Max Filters"", IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, vol. 15, no. 5, pp. 504-507, 1993.

[2] D. Coltuc, I. Brulea, V. Buzuloiu, "A Very Fast Algo-
rithm for Max/Min Filtering"", IEEE Intl. Conference

on Electronics, Circuits and Systems, ICECS'96, Rho-
dos, Greece, vol. I, pp. 464-466, 1996.

[3] N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, 1976.

[4] I. Pitas, "Fast Algorithms for Running Ordering and
Max/Min Calculation", IEEE Trans. on Circuits and

Systems, vol. 36, no. 6, pp. 795-804, 1989.

[5] D. Coltuc, I. Pitas, "Fast Computation of a Class of
Running Filters", IEEE Trans. on Signal Processing, vol.
46, no. 3, 549-553, 1998.

