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ABSTRACT literature - see [9] for a structured overview. In the last
We discuss herein filtering problems involving the emula- dechagle, B?Ckprqp'agatloT'(:?:P) hads eTer%ﬁtd ast a'stalndard
tion of nonlinear systems which have embedded dynam-tec nique for trgmmg multi-layer adaptive filters 0 Impte-
ment static functions, to operate on tapped-delay line inputs,

ics and where the truth model consists only of an input 4 ive filt here the desired outouts of each fi
and output sequence. It has been shown [1] that steep-an Inrecursive fiiters where the desired outputs of €ach Til-

est descent training algorithms such Backpropagation- EeFr)layer are k(;\o(\j/vn - [10, 1t’ 12]th Theb p(;lcri]c&ple of stath
Through-TimgBPTT) are locallyl/ > optimal for applica- was extended to networks with embedded memory via

tions where training inputs vary a@ach weighupdate, or backpr.opagation-through-tin(BPTT) [13, 14]'. In essence,
training epoch However, when the same data set is used BPTT Is astegpest dgscent.algorlthms, applied .successwely
for several epochs, as is typical for nonlinear system iden-1© each layer in mqnlmear fll'ter. BBTT can be improved
tification, BPTT is suboptimal, and a new adaptive Gauss- upon by a Newton-like technigue.

Newton technique, which generates updates closer to the

Newton update direction, is preferable. We discuss the ap- 2. OVERVIEW OF THE METHOD

plication of the technique to IIR and FIR filter architectures

for pre- and post-compensating nonlinear systems. Compargefore delving into algorithmic details, we describe in fig.
isons to canonical methods, namely BPTT, Kalman Filter- 1 the flow diagram according to which the cpements of

ing, Gauss-Newton, and Broyden-Fletcher-Goldfarb-Shannghe method are combined. The solid lines indicate the flow

(BFGS) are favorably made. of data between steps; the dashed lines indicate the flow of
control. In order to limit the filter's degrees of computa-
1. BACKGROUND tional freedom [15, 16, 17, 18] the desired dynamic non-

linear operator is decomposed to linear dynamic elements,
Over the last few decades, lineymamic system identifica-  and nonlinear elements. Based upon this decomposition, we
tion has evolved into a rigorous field [2, 3]. However, non- taylor-make a filter architecture, represented by functipn
linear system identification is still a nascent science, demon-and consisting of adaptive static nonlinear components, and
strating a need for new ideas and techniques. We’ll consideradaptive linear components. Next, using an initial set of fil-
systems consisting of cascaded linear and nonlinear com+{er parametersy, and architecturé, we propagate a train-
ponents, where only an input-output sequence is availableing input sequencéu,, } through the filter to obtain an out-
Wiener proposed the use of functional series which were put sequencgg,, }. An error signale,, } is created by sub-
orthogonal for white Gaussian inputs [4]. Such polynomial- tracting from{y,, } the desired output sequengg, }. Using
type functional sets, which modeled nonlinear dynamics ash, {e, }, andw, a single matriXx¥’ & is constructed which
a series of convolutions of increasing order, had been pre-relates each network parameter to the erroratipices over
viously described by Volterra [5]. Identification of systems the full sequencde, }. UsingVh, {¢,}, and a learning
using finite-order Volterra-Series expansions have been in-rateyx, an adaptive Newton-like update algorithm is used to
vestigated for deterministic, Gaussian and Non-Gaussian in-determine a weight update vectiw. A temporary param-
puts [6, 7, 8]. While the Volterra-based techniques accom- eter setw; is created by summingw andw. Usingw,
modate a vast class of nonlinear systems, the characterisandh, the training input sequende,, } is again propagated
tic functions orVolterra Kernelsprovide excessive degrees through the filter to obtain output sequenf®, }. {e:,}
of computational freedom, and so place excessively strin-is created by differencingy;, } and{y,, }. Costs are com-
gent requirements on the quality and quantity of identifi- puted from the error sequences, suchjas- Y, e2 and
cation data. Several block-oriented approaches, which in-J, = > e2. If J > J;, w < wy, pu is increased by a
corporate knowledge of the system architecture to reduceconstant factor, and the input sequence is again propagated
the number of free parameters, have been addressed in thiarough the filter. Otherwisgy is decreased by a constant
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Figure 1: Overview of the Method

factor andAw is recalculated.

3. THE NEWTON-LIKE TRAINING ALGORITHM

In this section we provide some rationale for the adaptive

u; andy;, are sampled from real-world continuous signals,
thenv, can be regarded as a vector of noise on the ideal
system inputs or sampled outputs. Alternatively,can be
regarded as error resulting from the architectural imperfec-
tions of the network, such as emulating IIR linear dynamics
with a tapped delay line. For a weights estimate at eggoch
wi_1, we define a cost function in terms of the error in the
absence of disturbanes :

J(Wr,ux) = (2)

L (h(wi ) — hlw, w))T (h(we, i) — h(w, )

2

By evoking the mean value theorem [19], it can be shown
[16] that asw; — w™, we may approximate cost as:

J(wi,uy) =

1
= (emr — Vwh(wWe_1, ue)’ (Wi — wi_1))

2
(emp — Vwh(wWe_1,up)’ (Wi — wi_1)) (3)

We find the derivative of this cost with respectwq.
Vwd (Awi_1) = =Vh(wi_1, ug) (4)

(emr — Vwh(We_1,ue)’ (wy — wi_1))

T

Suppose one demands that the step taken atitimé,
Awy_1 = wi, —wWg_1, be co-linear with the gradient of the
guadratic cost estimate at the new locatie, to which we
are stepping:

Awg_q = _/ikij(wkauk) = (5)
ﬂkvwh(wk—lauk) (emk — th(wk_l,uk)TAWk—1>

For a quadratic cost, this restriction would achieve up-
dates which move more directly towards the quadratic cost
minimum than a steepest descent update. In our case, since
1, can be freely adjusted, we can solve (5) for the update
step:

] -1
Awg_1 = </i_k + Vwh(wgi_1, llk)th(Wk—l,llk)T>

Vwh(wi_1,ur)en; (6)

As one decreases the bandwidth of the input sigial

training algorithm - a more thorough derivation may be found®" increases the degrees of freedom in the filter architecture,

vi = h(w",ug) + vy

wherew* is the vector of ideal weights which train-
ing seeks to discoveny, is a vector of inputs at epoch
L andvy, is a vector of unknown disturbances. If the data in

1The subscripk ony, andu indicates that the inputs, and desired

in [16]. We seek, at each trainiregpoch an iterative update
of the weights vector. At epoch, one may describe the
sequence of desired training outputs as a vector:

one increases the condition number of the matrix
Vwh(wWi_1,0;)Vwh(ws_1,ug)” @)

If p is too large the poor conditioning of the inverse in
equ. (6) can detrimentally effect the update direction. Con-
versely, if u;, is too small, convergence is retarded. Conse-
quently, we allowu; to vary based on the performance of
the training updates as described in fig. 1.

output set can be changed at each epoch, however, for applications with
non-quadratic cost these are typically held constant over several epochs.



4. FINDING THE FULL DERIVATIVE MATRIX
VwH FOR A GENERAL IIR FILTER
ARCHITECTURE

Figure 2: Generic Nonlinear Recursive Filter Architecture

The general approach described here applies to a vas
range of filter architectures. It can be considerably refined
for computational efficiency for specific architectures such
as FIR Volterra networks [16, 20]. The generic architecture
of this discussion is displayed in fig. 2. The system has
M states, represented at timeby the state vectoa,, =
[a1, -..am,]? 2. The subsequent value of each state in the
filter or system is some function of the current states, the
inputs and the set of parameters within the network

A1n41 fl(anaunaw)

(8)

an41 =

AMn+1 fM(an,Un,W)

wherew = [w; ... wy]” is a vector of length’, con-
taining all adaptable parameters in the network, angd} n =
1...N isthe input sequence to the system. For the sake of
clarity, we assume that the states of the system asetz}
fore excitation with the input sequenge,, }. Each output
of the filter is generated by the function = fo(ay,, un, w).
The sequence of outputs is a vector of lengttwhich we
denoteh(w,u). Our task is to determine the full deriva-
tive matrix V-2 (w, u), which relates each weight to error
produced over the full time sequence.

In order to calculate the dependence of some oujput
onw, we employ a partial derivative expansion with respect
to the state vector:

wan = zn: Va,yrlvwai

i=1

(9)

The termV wa; in equ.(9) can be directly calculated

far; day;
dw1 wv
Vwa; = : : (10)
6(1]\/], 6(1]\/],
dw1 wv

2For this section, we have dropped any indication of the training epoch,
k, simply for notational clarity

dfr(a,ui,w)
dwq

of1(ai,ui,w)
awv

Ofn(ai,ui,w)
awv

Ofnm(ai,ui,w)
dwq

In order to calculate the teriW,, g, in equ. (9), we
again apply a partial derivative expansion as follows:
Va,Un = Va,UnVa,_;an...Va,ai41 (12)

Each of the terms in (11) can now be computed:

[ daiiy: dai;41
dai; danr;
ValaH_l = : : (12)
danriqr daniy1
t L Odai; danr;
[ 09 n
Va, ¥ = R (13)
A _3a1n 3aMn
_ -8f0(anaunaw) 8f0(anaunaw)
dai,, dapry

Based upon these equations, we present below an algo-
rithm by which V2 (w,u) can be determined. We begin

with two all-zeros matriced = 0V*V andJ = oVxM

Note that the notatioM (¢, :) refers to all the columns at
row ¢ in H, H(:, 7) refers to all the rows in columhof H,
andH(i : n,:) refers to the matrix block defined by all the
columns and the rows frotnto ».

1. J(N,)) = Vauin

2. H(N,:) =V, inVwayn
fori=N-1:1step-1
JE+1:N,:)«J(i+1:N,)Vaaiq
J(i: N2« Va i
H(Gi:N,:)«H@G: N, H)+TI(: N, )Vyay

end

© N o 0 &

Vwh(w,u) « H

5. EXAMPLES OF TAYLOR-MADE ADAPTIVE
DYNAMIC NONLINEAR FILTERS

In this section, we describe two sample applications of al-
gorithm (6) and illustrate how one may Taylor-make a tem-
poral network to perform a specific nonlinear dynamic op-
eration, such network being efficiently trained with the new
technique. Consider first the identification and inversion of
a simple Wiener-Type Nonlinear System. The Wiener archi-
tecture illustrated in fig. 3 models an audio amplifier which

exhibits crossover distortion. The memoryless nonlinearity



the amplifier. The A-D and D-A conversions in this case
are performed with a 16 bit AD1847 Codec, and the pre-
warping of the signal is achieved with an ADSP2181 mi-
croprocessor. Fig. 5 shows the spectral response of the non-
linear amplifier when excited with a dual tone test signal.
Fig. 6 displays the spectral response of the amplifier to a
pre-warped dual tone. Note that the amplitudes of nonlinear
distortion harmonics have been reduced in the pre-warped

Figure 3: Wiener model of a nonlinear amplifier signal by more than 20dB.

at the amplifier's output is emulated with a parameterized ©
function:

1+ eW1eYn
1 — ewWie¥n

F(Yn, wis, wis, wi7) = W1s + w7y, (14)

magnitude (dB)

The linear dynamics of the amplifier are emulated over
the audible band with @" order IIR digital filter.

The data for training the adjustable parameter{sef
is gathered according to the method of fig. 4. The ampli-
fier is excited with a chirp signal ranging in frequency from e
19.2 — 0kHz, summed with zero-mean Gaussian noise.
The amplifier outputs are sampled to obtain the desired net-
work output sequence. The network input sequence is ob-Figure 5: Spectral response of the amplifier to a dual tone
tained by sampling the input signal to the amplifier. Algo- Ssignal
rithm (6) is then used to identify the parameters of the filter
in fig. 3.
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Figure 4: Obtaining an input-output truth model
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In an lIR system, a non-minimum phase zero cannot be
precisely dynamically compensated, since it will cause an
unstable pole in the compensator. Consequently, if the iden-Figure 6: Spectral response of the amplifier to a dual tone
tification yields a non-minimum-phase zero for the linear signal
filter, the output sequence is delayed relative to the input
sequence and the identification is repeated. For input se- It should be noted that in the case of a simple Wiener
quenceu,, }, the filter is trained to estimate outpyts, 1 }. architecture, the linear and nonlinear blocks can be sepa-
Successive delays may be added until the zeros of the idenrately identified using error prediction algorithms [22, 23].
tified linear filter are minimum-phase. Once the filter pa- These techniques cannot be applied, however, if the system
rameters are identified, the linear and nonlinear blocks areis more complex. Consider our second example, the generic
analytically inverted using well-known techniques [21]. tracking system displayed in fig. 7. This system can be con-

A lowpass digital filter with cutoff at roughl$0kH = is sidered as some nonlinear sensor, feeding electronics with
cascaded with the IIR filter inverse to limit high-frequency nonlinear components and linear dynamics, which output to
gain. A signal is pre-warped by the inverse nonlinearity some plant. The dynamics on the feedback path could rep-
and then the inverse linear dynamics before being input toresent parasitic capacitance in the system. For this example,




of this filter architecture are more extensively discussed in
[16]. We will focus here only on the relative performance
o—e— (9 (9 £, C(9 of canonical training algorithms applied to the architecture.
The training input signal to the system of fig. 7 consisted
of a chirp with added Gaussian noise. Figure (9) shows
C(9 the RMS network error for00 parameter updates using al-
gorithm (6), and200 updates respectively using other suit-
able optimization algorithms namely the Kalman Filter, the
Figure 7: Block Diagram of a tracking system with static Gauss-Newton technique, the BFGS algorithm with a line
nonlinearities, a control law and parasitic filtering on the Search [24], and BPTT. The line search for BFGS was con-
feedback path ducted using the method of false position [25]. Notice that
all Newton-like techniques outperform BPTT. The superior
convergence rate and cost minimization achieved with BFGS
the dynamic transfer functions and nonlinearities can be de-gng (6) are clearly evident. Note that in contrast to BEGS,

scribed: (6) does not require a line search so each epoch involves

lebs + 3e7 substantially less computation than is required for a BFGS
Ci(s) = s2 1+ 1.007ebs + TeT (15) update. By applying the trained filter to post-linearizing

1e7 the nonlinear tracking system (15), the distortion peaks in
Ch(s) = 2+ 1ebs response to multi-tone signals can be reduced by roughly
1e8 35dB [16].
03(8) = 5
s2 4+ 1.01ebs + 1e8

1 2 1 3
filu) = u—|—2u + Y
f2(u) = 1.2551u” — 1.4337u® + 0.7038u> + 0.9540u

- Gauss-Newton
RGF
-« BPTT

Figure 9: The RMS error of the network over 100 epochs
using (6), and over 200 with an assortment of canonical
techniques

Figure 8: The network employed to invert the tracking sys-
tem described by equ. (15)

We would like the system outputs to exactly track sys- 6. CONCLUSION
tem inputs, however, with nonlinearities, dynamics and feed-
back, the outputs are a severely distorted version of the orig
inal system inputs. We seek an adaptive compensator whic

can be trained to map the system outputs to the Orlglnalplicable to problems involving the emulation, control, pre-

undistorted inputs. Based on an estimate of the time con- : . .

stants of the linear dynamics to be emulated, and an es-Or post- processing of nonlinear dynamic systems. - Such
: y . . ' problems are best addressed by taylor-made filters which
timate of the order of the nonlinear functions to be emu-

. . . are structured so as to restrict their degrees of computational
lated, we can Taylor-make an architecture for inverting the 9 P

system of fig. 7 as shown in fig. 8. This filter uses lim- freedom and which may be trained by the novel algorithm.

) . Th h ill [ icati -
ited degrees of computational freedom, and has good gen- e approach was illustrated in application to the pre- and

eralization characteristiés The training and performance post-linearization respectively of a nonlinear audio ampli
9 P fier and a nonlinear feedback tracking system. For a wide

3A rigorous treatment of generalization can be found in [17, 18] range of problems using input/output truth models, the al-

We have described an adaptive Newton-like algorithm for
‘training dynamic nonlinear filters which contain embedded
emory or which use recursion. These architectures are ap-




gorithm converges more quickly and more accurately than[13] D. Nguyen Applications of Neural Networks in Adap-
do BPTT, the Gauss-Newton method, Kalman Filtering and tive Control PhD thesis, Stanford University, June
the Broyden-Fletcher-Goldfarb-Shanno technique. 1991.

[14] D. Hanks, “U.s. patent: Adaptive feedback system for
controlling head/arm position in a disk drive,” Tech.
Rep. 5,548,192, US Patent and Trademark Office, Au-
gust 1996.
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