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ABSTRACT

We discuss herein filtering problems involving the emula-
tion of nonlinear systems which have embedded dynam-
ics and where the truth model consists only of an input
and output sequence. It has been shown [1] that steep-
est descent training algorithms such asBackpropagation-
Through-Time(BPTT) are locallyH1 optimal for applica-
tions where training inputs vary ateach weightupdate, or
training epoch. However, when the same data set is used
for several epochs, as is typical for nonlinear system iden-
tification, BPTT is suboptimal, and a new adaptive Gauss-
Newton technique, which generates updates closer to the
Newton update direction, is preferable. We discuss the ap-
plication of the technique to IIR and FIR filter architectures
for pre- and post-compensating nonlinear systems. Compar-
isons to canonical methods, namely BPTT, Kalman Filter-
ing, Gauss-Newton, and Broyden-Fletcher-Goldfarb-Shanno
(BFGS) are favorably made.

1. BACKGROUND

Over the last few decades, lineardynamic system identifica-
tion has evolved into a rigorous field [2, 3]. However, non-
linear system identification is still a nascent science, demon-
strating a need for new ideas and techniques. We’ll consider
systems consisting of cascaded linear and nonlinear com-
ponents, where only an input-output sequence is available:
Wiener proposed the use of functional series which were
orthogonal for white Gaussian inputs [4]. Such polynomial-
type functional sets, which modeled nonlinear dynamics as
a series of convolutions of increasing order, had been pre-
viously described by Volterra [5]. Identification of systems
using finite-order Volterra-Series expansions have been in-
vestigated for deterministic, Gaussian and Non-Gaussian in-
puts [6, 7, 8]. While the Volterra-based techniques accom-
modate a vast class of nonlinear systems, the characteris-
tic functions orVolterra Kernelsprovide excessive degrees
of computational freedom, and so place excessively strin-
gent requirements on the quality and quantity of identifi-
cation data. Several block-oriented approaches, which in-
corporate knowledge of the system architecture to reduce
the number of free parameters, have been addressed in the

literature - see [9] for a structured overview. In the last
decade, Backpropagation (BP) has emerged as a standard
technique for training multi-layer adaptive filters to imple-
ment static functions, to operate on tapped-delay line inputs,
and in recursive filters where the desired outputs of each fil-
ter layer are known - [10, 11, 12]. The principle of static
BP was extended to networks with embedded memory via
backpropagation-through-time(BPTT) [13, 14]. In essence,
BPTT is a steepest descent algorithms, applied successively
to each layer in anonlinear filter. BBTT can be improved
upon by a Newton-like technique.

2. OVERVIEW OF THE METHOD

Before delving into algorithmic details, we describe in fig.
1 the flow diagram according to which the components of
the method are combined. The solid lines indicate the flow
of data between steps; the dashed lines indicate the flow of
control. In order to limit the filter’s degrees of computa-
tional freedom [15, 16, 17, 18] the desired dynamic non-
linear operator is decomposed to linear dynamic elements,
and nonlinear elements. Based upon this decomposition, we
taylor-make a filter architecture, represented by functionh,
and consisting of adaptive static nonlinear components, and
adaptive linear components. Next, using an initial set of fil-
ter parametersw, and architectureh, we propagate a train-
ing input sequencefung through the filter to obtain an out-
put sequencefŷng. An error signalfeng is created by sub-
tracting fromfŷng the desired output sequencefyng. Using
h, feng, andw, a single matrixrwh is constructed which
relates each network parameter to the error it produces over
the full sequencefeng. Usingrwh, feng, and a learning
rate�, an adaptive Newton-like update algorithm is used to
determine a weight update vector�w. A temporary param-
eter setwt is created by summing�w andw. Usingwt

andh, the training input sequencefung is again propagated
through the filter to obtain output sequencefŷtng. fetng
is created by differencingfŷtng andfyng. Costs are com-
puted from the error sequences, such asJ =

P
n e

2
n and

Jt =
P

n et
2
n. If J > Jt, w  wt, � is increased by a

constant factor, and the input sequence is again propagated
through the filter. Otherwise,� is decreased by a constant
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Figure 1: Overview of the Method

factor and�w is recalculated.

3. THE NEWTON-LIKE TRAINING ALGORITHM

In this section we provide some rationale for the adaptive
training algorithm- a more thoroughderivation may be found
in [16]. We seek, at each trainingepoch, an iterative update
of the weights vector. At epochk, one may describe the
sequence of desired training outputs as a vector:

yk = h(w�;uk) + vk (1)

wherew� is the vector of ideal weights which train-
ing seeks to discover,uk is a vector of inputs at epochk
1 andvk is a vector of unknown disturbances. If the data in

1The subscriptk on yk anduk indicates that the inputs, and desired

uk andyk are sampled from real-world continuous signals,
thenvk can be regarded as a vector of noise on the ideal
system inputs or sampled outputs. Alternatively,vk can be
regarded as error resulting from the architectural imperfec-
tions of the network, such as emulating IIR linear dynamics
with a tapped delay line. For a weights estimate at epochk,
wk�1, we define a cost function in terms of the error in the
absence of disturbancevk:

J (wk;uk) = (2)
1

2
(h(wk;uk)� h(w;uk))

T
(h(wk;uk) � h(w;uk))

By evoking the mean value theorem [19], it can be shown
[16] that aswk ! w�, we may approximate cost as:

Ĵ(wk;uk) =

1

2

�
emk �rwh(wk�1;uk)

T (wk �wk�1)
�T

�
emk �rwh(wk�1;uk)

T (wk �wk�1)
�

(3)

We find the derivative of this cost with respect towk.

rwĴ(�wk�1) = �rwh(wk�1;uk) (4)�
emk �rwh(wk�1;uk)

T (wk �wk�1)
�

Suppose one demands that the step taken at timek � 1,
�wk�1 = wk�wk�1, be co-linear with the gradient of the
quadratic cost estimate at the new location,wk, to which we
are stepping:

�wk�1 = ��krwĴ(wk;uk) = (5)

�krwh(wk�1;uk)
�
emk �rwh(wk�1;uk)T�wk�1

�
For a quadratic cost, this restriction would achieve up-

dates which move more directly towards the quadratic cost
minimum than a steepest descent update. In our case, since
�k can be freely adjusted, we can solve (5) for the update
step:

�wk�1 =

�
1

�k
+rwh(wk�1;uk)rwh(wk�1;uk)

T

�
�1

rwh(wk�1;uk)emk (6)

As one decreases the bandwidth of the input signaluk,
or increases the degrees of freedom in the filter architecture,
one increases the condition number of the matrix

rwh(wk�1;uk)rwh(wk�1;uk)
T (7)

If �k is too large the poor conditioning of the inverse in
equ. (6) can detrimentally effect the update direction. Con-
versely, if�k is too small, convergence is retarded. Conse-
quently, we allow�k to vary based on the performance of
the training updates as described in fig. 1.

output set can be changed at each epoch, however, for applications with
non-quadratic cost these are typically held constant over several epochs.



4. FINDING THE FULL DERIVATIVE MATRIX
rWH FOR A GENERAL IIR FILTER
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Figure 2: Generic Nonlinear Recursive Filter Architecture

The general approach described here applies to a vast
range of filter architectures. It can be considerably refined
for computational efficiency for specific architectures such
as FIR Volterra networks [16, 20]. The generic architecture
of this discussion is displayed in fig. 2. The system has
M states, represented at timen by the state vectoran =
[a1n : : :aMn]

T 2. The subsequent value of each state in the
filter or system is some function of the current states, the
inputs and the set of parameters within the network

an+1 =

2
64

a1n+1
...

aMn+1

3
75 =

2
64

f1(an; un;w)
...

fM (an; un;w)

3
75 (8)

wherew = [w1 : : :wV ]T is a vector of lengthV , con-
taining all adaptable parameters in the network, andfung n =
1 : : :N is the input sequence to the system. For the sake of
clarity, we assume that the states of the system are all0 be-
fore excitation with the input sequencefung. Each output
of the filter is generated by the functionŷn = f0(an; un;w).
The sequence of outputs is a vector of lengthN which we
denoteh(w;u). Our task is to determine the full deriva-
tive matrixrwh(w;u), which relates each weight to error
produced over the full time sequence.

In order to calculate the dependence of some outputŷn
onw, we employ a partial derivative expansion with respect
to the state vector:

rwŷn =
nX
i=1

rai ŷnrwai (9)

The termrwai in equ.(9) can be directly calculated

rwai =

2
64

@a1i
@w1

: : : @a1i
@wV

...
...

...
@aMi

@w1
: : : @aMi

@wV

3
75 (10)

2For this section, we have dropped any indication of the training epoch,
k, simply for notational clarity
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In order to calculate the termrai ŷn in equ. (9), we
again apply a partial derivative expansion as follows:

rai ŷn = ran ŷnran�1an : : :raiai+1 (11)

Each of the terms in (11) can now be computed:

raiai+1 =

2
664
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Based upon these equations, we present below an algo-
rithm by whichrwh(w;u) can be determined. We begin
with two all-zeros matrices,H = 0N�V andJ = 0N�M .
Note that the notationH(i; :) refers to all the columns at
row i in H, H(:; i) refers to all the rows in columni of H,
andH(i : n; :) refers to the matrix block defined by all the
columns and the rows fromi to n.

1. J(N; :) = raN ŷN

2. H(N; :) = raN ŷNrwaN

3. for i = N-1:1 step -1

4. J(i+ 1 : N; :) J(i + 1 : N; :)raiai+1

5. J(i : N; :) rai ŷi

6. H(i : N; :) H(i : N; :) + J(i : N; :)rwai

7. end

8. rwh(w;u) H

5. EXAMPLES OF TAYLOR-MADE ADAPTIVE
DYNAMIC NONLINEAR FILTERS

In this section, we describe two sample applications of al-
gorithm (6) and illustrate how one may Taylor-make a tem-
poral network to perform a specific nonlinear dynamic op-
eration, such network being efficiently trained with the new
technique. Consider first the identification and inversion of
a simple Wiener-Type Nonlinear System. The Wiener archi-
tecture illustrated in fig. 3 models an audio amplifier which
exhibits crossover distortion. The memoryless nonlinearity
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Figure 3: Wiener model of a nonlinear amplifier

at the amplifier’s output is emulated with a parameterized
function:

f( �yn; w15; w16; w17) = w15
1 + ew16�yn

1� ew16�yn
+w17�yn (14)

The linear dynamics of the amplifier are emulated over
the audible band with a7th order IIR digital filter.

The data for training the adjustable parameter setfwg
is gathered according to the method of fig. 4. The ampli-
fier is excited with a chirp signal ranging in frequency from
19:2 � 0kHz, summed with zero-mean Gaussian noise.
The amplifier outputs are sampled to obtain the desired net-
work output sequence. The network input sequence is ob-
tained by sampling the input signal to the amplifier. Algo-
rithm (6) is then used to identify the parameters of the filter
in fig. 3.
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Figure 4: Obtaining an input-output truth model

In an IIR system, a non-minimum phase zero cannot be
precisely dynamically compensated, since it will cause an
unstable pole in the compensator. Consequently, if the iden-
tification yields a non-minimum-phase zero for the linear
filter, the output sequence is delayed relative to the input
sequence and the identification is repeated. For input se-
quencefung, the filter is trained to estimate outputsfyn�1g.
Successive delays may be added until the zeros of the iden-
tified linear filter are minimum-phase. Once the filter pa-
rameters are identified, the linear and nonlinear blocks are
analytically inverted using well-known techniques [21].

A lowpass digital filter with cutoff at roughly20kHz is
cascaded with the IIR filter inverse to limit high-frequency
gain. A signal is pre-warped by the inverse nonlinearity
and then the inverse linear dynamics before being input to

the amplifier. The A-D and D-A conversions in this case
are performed with a 16 bit AD1847 Codec, and the pre-
warping of the signal is achieved with an ADSP2181 mi-
croprocessor. Fig. 5 shows the spectral response of the non-
linear amplifier when excited with a dual tone test signal.
Fig. 6 displays the spectral response of the amplifier to a
pre-warped dual tone. Note that the amplitudes of nonlinear
distortion harmonics have been reduced in the pre-warped
signal by more than 20dB.
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Figure 5: Spectral response of the amplifier to a dual tone
signal
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Figure 6: Spectral response of the amplifier to a dual tone
signal

It should be noted that in the case of a simple Wiener
architecture, the linear and nonlinear blocks can be sepa-
rately identified using error prediction algorithms [22, 23].
These techniques cannot be applied, however, if the system
is more complex. Consider our second example, the generic
tracking system displayed in fig. 7. This system can be con-
sidered as some nonlinear sensor, feeding electronics with
nonlinear components and linear dynamics, which output to
some plant. The dynamics on the feedback path could rep-
resent parasitic capacitance in the system. For this example,
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the dynamic transfer functions and nonlinearities can be de-
scribed:

C1(s) =
1e5s+ 3e7

s2 + 1:007e5s+ 7e7
(15)

C2(s) =
1e7

s2 + 1e5s

C3(s) =
1e8

s2 + 1:01e5s+ 1e8
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Figure 8: The network employed to invert the tracking sys-
tem described by equ. (15)

We would like the system outputs to exactly track sys-
tem inputs, however, with nonlinearities, dynamics and feed-
back, the outputs are a severely distorted version of the orig-
inal system inputs. We seek an adaptive compensator which
can be trained to map the system outputs to the original
undistorted inputs. Based on an estimate of the time con-
stants of the linear dynamics to be emulated, and an es-
timate of the order of the nonlinear functions to be emu-
lated, we can Taylor-make an architecture for inverting the
system of fig. 7 as shown in fig. 8. This filter uses lim-
ited degrees of computational freedom, and has good gen-
eralization characteristics3. The training and performance

3A rigorous treatment of generalization can be found in [17, 18]

of this filter architecture are more extensively discussed in
[16]. We will focus here only on the relative performance
of canonical training algorithms applied to the architecture.
The training input signal to the system of fig. 7 consisted
of a chirp with added Gaussian noise. Figure (9) shows
the RMS network error for100 parameter updates using al-
gorithm (6), and200 updates respectively using other suit-
able optimization algorithms namely the Kalman Filter, the
Gauss-Newton technique, the BFGS algorithm with a line
search [24], and BPTT. The line search for BFGS was con-
ducted using the method of false position [25]. Notice that
all Newton-like techniques outperform BPTT. The superior
convergence rate and cost minimization achieved with BFGS
and (6) are clearly evident. Note that in contrast to BFGS,
(6) does not require a line search so each epoch involves
substantially less computation than is required for a BFGS
update. By applying the trained filter to post-linearizing
the nonlinear tracking system (15), the distortion peaks in
response to multi-tone signals can be reduced by roughly
35dB [16].
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Figure 9: The RMS error of the network over 100 epochs
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6. CONCLUSION

We have described an adaptive Newton-like algorithm for
training dynamic nonlinear filters which contain embedded
memory or which use recursion. These architectures are ap-
plicable to problems involving the emulation, control, pre-
or post- processing of nonlinear dynamic systems. Such
problems are best addressed by taylor-made filters which
are structured so as to restrict their degrees of computational
freedom and which may be trained by the novel algorithm.
The approach was illustrated in application to the pre- and
post-linearization respectively of a nonlinear audio ampli-
fier and a nonlinear feedback tracking system. For a wide
range of problems using input/output truth models, the al-



gorithm converges more quickly and more accurately than
do BPTT, the Gauss-Newton method, Kalman Filtering and
the Broyden-Fletcher-Goldfarb-Shanno technique.

Acknowledgments

This work was supported by the Stanford Gravity Probe-B
project under NASA contract NAS 8-36125.

7. REFERENCES

[1] T. K. B. Hassibi, “h1 optimal training algorithms
and their relation to backpropagation,”Proceedings of
the NIPS94 - Neural Information Processing Systems:
Natural and Synthetic, pp. 191–198, Nov-Dec 1994.

[2] P.Eykhoff, System Identification. John Wiley and
Sons, 1st ed., 1979.

[3] R. S.P.Boyd and M.K.Lau, “Set-membership identifi-
cation of systems with parametric uncertainty,”IEEE
Transactions on Automatic Control, vol. 37, pp. 929–
941, July 1992.

[4] N.Wiener, Nonlinear Problems in Random Theory.
Wiley, New-York, 1958.

[5] V.Volterra, Theory of Functions. Blackie and Sons,
Glascow, 1930.

[6] S. Boyd,Volterra Series: Engineering Fundamentals.
PhD thesis, University of California at Berkeley, 1985.

[7] S. Nam, Application of Higher-order Spectral Anal-
yses to Nonlinear System Identification. PhD thesis,
University of Texas at Austin, 1990.

[8] K.I.Kim and E.J.Powers, “Orthogonalised frequency
domain volterra model for non-gaussian inputs,”IEE
Proceedings-F, vol. 140, no. 6, pp. 403–409, 1993.

[9] J. Brendat,Nonlinear System Analyses and Identifica-
tion from Random Data. New York, Wiley, 1990.

[10] S. S. B. Widrow,Adaptive Signal Processing. Prentice
Hall, 1985.

[11] D. Hyland, “U.s. patent: Multiprocessor system and
method for identification and adaptive control of dy-
namic systems,” Tech. Rep. 5,796,920, US Patent and
Trademark Office, August 1998.

[12] S. W. et al., “U.s. patent: Nonlinear adaptive filter,”
Tech. Rep. 4,843,583, US Patent and Trademark Of-
fice, June 1989.

[13] D. Nguyen,Applications of Neural Networks in Adap-
tive Control. PhD thesis, Stanford University, June
1991.

[14] D. Hanks, “U.s. patent: Adaptive feedback system for
controlling head/arm position in a disk drive,” Tech.
Rep. 5,548,192, US Patent and Trademark Office, Au-
gust 1996.

[15] M. Rabinowitz, G. Franklin, and G.M.Gutt, “Adaptive
post linearization of dynamic nonlinear systems with
artificial neural networks,”ASME Journal of Dynamic
Systems, Measurement and Control, unknown 1999.

[16] M. Rabinowitz, G. Franklin, and G.M.Gutt, “An adap-
tive gauss-newton algorithm for training multi-layer
nonlinear filters which have embedded memory,”Ci-
cuits, Systems and Signal Processing, vol. 18, no. 4,
1999.

[17] D.H.Wolpert, “A mathematical theory of generaliza-
tion: Part 1,” Complex Systems, vol. 4, pp. pp 151–
200, 1990.

[18] D.H.Wolpert, “A mathematical theory of generaliza-
tion: Part 2,” Complex Systems, vol. 4, pp. pp 201–
249, 1990.

[19] M.Vidyasagar,Nonlinear System Analyses. Prentise-
Hall, 2nd ed., 1993.

[20] M.Rabinowitz, “Patent application: A method and
system for training dynamic nonlinear adaptive fil-
ters which have embedded memory,” Tech. Rep.
09/201,927, Application: US Patent and Trademark
Office, December1999.

[21] A. Oppenheim and R.W.Schafer,Discrete-Time Signal
Processing. Prentice-Hall, Inc., 1989.

[22] T.Wigren, “Recursive predicition identification using
the nonlinear wiener model,”Automatica, vol. 29,
pp. pp 1011–1025, 1993.

[23] G. Franklin, J. Powell, and A. Emami-Naeini,Feed-
back Control of Dynamic Systems. Addison-Wesley,
2nd ed., 1991.

[24] D. Bertsekas,Nonlinear Programming, vol. 1. Athena
Scientific, 2nd ed., 1995.

[25] D. G. Luenberger,Linear and Nonlinear Program-
ming. Addison-Wesley, 2nd ed., 1984.


