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ABSTRACT

Acoustic Emissions (AE), generated by the formation and
growth of micro-cracks in metal components, provide us with
a promising mechanical fault detection technique in
monitoring complex-shaped components in helicopters and
aircraft. A major challenge for an AE-based fault detection
algorithm is to distinguish crack related AE signals from
other interfering transient signals, such as fretting related AE
signals and electromagnetic transients. In this paper, we
presents a classifier, which makes its decision based on the
features extracted from joint time-frequency distribution data
by Self-Organizing Map (SOM) neural network. In-flight
data are used to test the performance of this classification
system, with promising results.

1. INTRODUCTION

Acoustic Emissions (AEs) are ultrasonic waves emitted from
material deformation process, such as micro crack generation
and growth. These AEs can be detected by the piezoelectric
transducers (PZT) placed close to the AE sources. Thus AE
based nondestructive inspection technique provides an
attractive automatic fault monitoring method in helicopter and
other aircraft. The characteristics of AE signals due to crack
generation and growth have been extensively studied in recent
year [1]. Most of these studies have been done in isolated
metal specimen under controlled laboratory environment.
However, in practice, the crack-related AE signal has to be
detected when the helicopter is in operation. In this case the
crack related AEs are measured in the presence strong
interference and noise. These interference and noise, caused
by vibration, fretting, electromagnetic and many other factors
are very complex and highly nonstationary. AEs from crack
generation and growth have possible frequency components
up to several MHz, whereas vibration signals occur below
100kHz [2]. Thus vibration noise can be removed by
prefiltering. However other
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Interference such as fretting caused by rubbing of parts and
electromagnetic noise are also transients and similar to crack
related AE in both time and frequency domains. Then the
discrimination of crack related AE from other interference
transients becomes an important issue and needs considerable
attention from a signal processing point of view.

This classification problem is further complicated by the fact
that in complex metal component geometry the characteristics
of AEs are not known a prior. Besides, the noise and
interference are highly load and component dependent [3]. It
is nearly impossible to use a conventional statistical classifier,
to the extent it needs the accurate mathematical models of the
signals, to distinguish the crack related AE from other
interference transients. In contrast, the neural network
classifier seems very suitable in this transient classification
problem because it does not need the accurate model about the
signals and it has strong non-linear mapping capability.

Previous research has shown that temporal information, i.e.,
time of arrival and rise time of the transients during a period
of rotation cycles of the rotor, can be used to distinguish crack
related AE and other interference [3][4]. However, the
classification scheme based purely on temporal information is
inadequate in a highly noisy environment such as the
operating helicopter’s rotor. Our investigations, over the past
four years, suggest that the spectral components also bear
valuable information for the discrimination of the crack-
related AE from other interference. Thus, it is quite natural for
us to design a classifier based on joint time-frequency
distribution data.

In this paper, we present a direct transient signal classifier
based on a Self-Organizing Map (SOM) neural network. In
the proposed system, we do not need to add a detection stage
before the classification. The basic idea is to use the SOM
neural network to map high dimensional time-frequency
distribution data into a low dimensional codebook. Then the
output from the SOM is used to make the classification
decision. In-flight helicopter data provided by Honeywell has
been used to test the performance of this neural classifier. The
paper is organized as follows. In Section 2, we present the in-
flight transient signal acquisition system as well as the



collected data. In Section 3 we give the classification system
structure and how to use the SOM to do transient
classification. The classification results are also given in
Section 3. Section 4 summarizes the paper and proposes
future research topics.

2. In-Flight Transient Signal Acquisition
System

The Rotor Acoustic Monitoring System (RAMS) developed
by Honeywell was flight-tested at Patuxent River Naval Base
on CH-46 Sea Knight helicopter from August 28 to
September 18, 1997 [8]. More than 16 hours of flight data
was recorded from 8 piezoelectric sensors mounted on one of
the rotor arms. The eight sensor positions are shown in the
Fig. 1. Sensors 1, 2 and 3 are located on the connection link,
sensors 4 and 5 on the pitch shaft, and sensors 6, 7, and 8 on
the pitch housing. A piezoelectric pinger is mounted on the
connection link of the rotor arm to simulate micro-crack
generation. Whenever the pinger is ON, a small pressure
proportional to the control voltage is added to the connection
link. When the pressure is released, an acoustic transient
signal is emitted from this area.

Fig. 1 Sensor position at in-flight data acquisition system

Honeywell provided us with a digitized set of data from the
level flight. The data includes the recordings at all eight
sensors for all eight permutations of pinger ON/OFF and
pinger control voltages of 100V, 48V, 20V and 10V case.
Different pinger excitation voltages simulate the different
micro crack sizes, from a small crack (voltage 10V) to a large
crack (voltage 100V). However the digitization of the data for
the different channels of observation was not synchronized, i.
e., the data digitized at different channels were all from
different time segments. The duration of each digitized
segment of data was about 2 seconds at a sampling frequency
of 2MHz (12 bit A/D accuracy).

In this paper, we use the data collected from sensor 2 at
excitation voltage of 100V only since sensor 2 is located at the
same connection link as the pinger. Sensor 3 is also located at
the same component. However, its data was corrupted at the
time of data recording and could not be used. Although sensor
1 is also mounted at the connection link, it is further away
from the pinger than sensor 2 and 3. The signal energy drops
quickly in sensor 1. Thus we will only use the data from
sensor 2 in this paper to test the performance of our neural
classifier. All the other sensors are mounted on different
components from the pinger. A more sophisticated method is
needed to detect acoustics emission signal before any
classification methods can be used.

3. Transient Signal Classification System
Based on the SOM

Previous work conducted by our group has verified that time-
frequency decomposition is well-suited for the detection and
classification of AE signals [5] [6]. The responses of sensors
to a crack related AE signal and extraneous interference have
different arrival times and different frequency contents. These
differences are due to propagation effects in mechanical parts.
We propose our transient classification system structure as
shown in Fig. 2.

Fig. 2 Transient Classification System Block Diagram

During the prefiltering/preprocessing stage, after A/D
conversion, we conduct bandpass filtering to remove most of
low frequency vibration noise (lower than 50 kHz) and high
frequency components (higher than 300KHz), which carry no
useful information in the Honeywell data. Then we apply
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Short-time Fast Fourier Transform (SFFT) to the time-domain
signal to obtain the signal. This results in a sequence of
frequency decomposition vectors extending along the time
axis. This high dimensional spectrogram matrix is then fed
into the SOM neural network and the low dimensional SOM
codebook matrix is obtained. The final stage is to make
classification decision based on the SOM outputs.

We applied the above classification system to the in-flight
data acquired from the system described at Section 2. A
sample segment of data after bandpass filtering from sensor 2
at pinger excitation voltage level of 100V is shown in Fig. 3,
and its spectrogram representation is shown in Fig. 4.

      Testing signal sequence after filtering

      

Fig. 3 A segment of time domain signal from sensor 2
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Fig. 4 Spectrogram of a segment of data from sensor 2

3.1 Feature Extraction by SOM

The concept of Self-Organizing Map (SOM) neural network
was introduced by Kohonen in early 1981 [7]. The SOM is a
sheet like neural network with M×N neurons. Each neuron or
a neighboring group of neurons responds to a specific kind of
input pattern. After the competitive learning process, the

locations of the active neurons to different input pattern tend
to become ordered. Thus the spatial location of a neuron in the
neural network can represent a particular input signal domain.

As shown in the Fig. 5, the SOM network takes the form of
grid structure. The grid vertices are called neurons, whose
weight vectors have the same dimension as the input training
vector. When the training process starts, the SOM takes the
neuron with the minimum distance or most similar to the
input vector as the winner. Then the SOM updates the weight
vector adaptively in the neighborhood of the winner neuron.
When the training process ends, all the input vectors are
mapped onto different neurons’ weight vectors called a
codebook.

Fig. 5 Self-Organizing Map neural network

with time frequency vector as input

There are several ways to define the distance measure
between the input vector and neurons’ weight vectors such as
Euclidean distance and inner product. Here we have used a
simple Euclidean distance. The training steps of the SOM
network are:

1. Initialize the SOM. Randomly assign small values to the
weight vector of each neuron:

 NMimmmW ni ×== ,,2,1],,,,[ 21 LL

Here the input signal is a series of n×1 spectrogram
vectors as shown in the Fig. 4.

2. Provide a new input vector ],,,[ 21 nxxxX L= , then

calculate the distance between each neuron and the new
input vector:
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3. Select the neuron j* as winner so that the Dj*  is the

minimum among Dj, i.e.,
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4. Update the weight vectors of the winner neuron j* and its
neighboring neurons adaptively:
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where Sj(n) is the neighborhood of the winner neuron j*

at time instance n. The initial Sj(n) can be large enough

to include all the neurons in the SOM. After hundreds of
training steps neurons show an ordered pattern, and Sj(n)

can eventually shrink linearly to include only one winner
neuron j*. η(n) (0<η(n)<1) is the learning rate, which
can be either a constant or a monotonically decreasing
function.

Repeat the above steps 2 – 4 until the network reaches its pre-
specified total training steps, which should be at least 500
times larger than the neuron number in the SOM [7]. At the
end of training process the weight vectors of the SOM become
ordered as shown in Fig. 6. The raw feature of the input
signal, namely the time-frequency distribution data, has been
encoded into the weight vectors of the SOM. Each weight
vector represents a particular kind of input pattern. Thus
different locations of the neurons in the SOM reflect different
input spaces, which provide us with the basis to make a
classification decision.

weight vector of 6*6 SOM codebook
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Fig. 6 Weight vectors of SOM after 20,000 training steps

3.2 Classification Decision Making Based on the
Output of SOM

After the competitive learning process, each neuron or a group
of neighboring neurons in the SOM responds to a particular
kind of input pattern. Thus we can expect that different types
of transient input signals will activate neurons (winning
neuron) in different locations within the same codebook.
Consequently, we can use the index sequence of active

neurons to each input data set to discriminate between crack-
related AE and other interference transients.

In our study, a segment of spectrogram data of pure pinger
ON transient from sensor 2 was fed into a 6×6 SOM to
conduct the training. After 20,000 training steps, the weight
vectors of the SOM became ordered as shown in the Fig. 6.
Because of the limited number of available training vectors
(about 3000 vectors), we used them repeatedly during the
20,000 training steps. The test signal consists of both a pinger
ON transient and other interference transients from sensor 2.
Fig. 4 shows a small portion of the test signals and Fig. 3 is
the time domain waveform of the corresponding test signal.
The index of the active neuron corresponding to each input
vector has been recorded as output from the SOM.

As we expected, we found that only transients due to the
pinger ON activated neuron 3 and only neuron 3 responded to
transients due to the pinger ON, as shown in Fig 7 and 8
respectively. Fig 7 is the active neuron index of the transient
due to the pinger ON. Fig. 8 is the active neuron index of
interference transients. Thus, we designed our classifier using
the following rules: whenever the active neuron is 3, we count
the number of times that neuron 3 is active in the following 20
successive outputs. If the number exceeds 10, the classifier
declares that the event is a pinger ON transient; otherwise it is
a non-pinger interference transient.

Based on this classification decision rule, we tested all the
data from sensor 2 at the excitation voltage 100V. The result
showed that the SOM network successfully differentiated the
pinger ON signal from other interference transients. There is
no missed pinger ON transient and the false error rate is lower
than 5%. The relatively high false error rate may be due to the
limited data available for training in the current study. The
simplicity of the final decision process may also contribute to
the relatively high false alarm rate.
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Fig. 7 Index of winner neuron corresponding to
 pinger ON transient



2900 2905 2910 2915 2920 2925 2930
0

1

2

3

4

5

6

7

8

9

10
response of SOM to interference transient

in
de

x
 o

f 
ac

tiv
e 

ne
u
ro

n

time elapse

Fig. 8 Index of active neuron corresponding to interference
transients

4. SUMMARY

In this paper, we proposed a neural network classifier and
used it successfully to differentiate transients due to the pinger
ON from other interference transients. These interference
transients are very similar to the transients created by the
pinger ON in both the frequency and time domains. A 6*6
SOM network was trained and tested on the in flight data
provided by Honeywell Inc. We believe that the proposed
methods can also be used in other applications such as tool-
wear monitoring system. For example, L. Owsley, et. al.
[9][10] found that the location of active neurons showed an
ordered pattern when the tool condition is good and
inharmonic and sudden changes when tool condition reaches
its “break” point in a tool-maintaining application.

In the future we will include multi-sensor data in our
classification. Since multiple sensors provide more
information about the differences between crack related AE
and other interference transients, we expect an enhanced
classification performance. We have conducted some
preliminary studies on this problem using simulated data.
Spectrogram data from two sensors were cascaded to form the
input vectors of an SOM to capture differences in arrival time
and frequency content at the two sensors. Based on the
classification system described above, a well trained 4*4
SOM correctly labeled all simulated crack related AE’s and
interference fretting transients. This confirmed that the
proposed SOM based classification method is a promising
transient signal classifier.
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