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ABSTRACT
In this paper we present a new simple algorithm to construct
Radial Basis Function (RBF) neural net based classifier. This
algorithm has the major advantage to require nothing else that the
training set to work (no step learning, threshold or other
parameters like in other methods). Despite its simplicity, we
show, on many benchmark datasets, that this algorithm provides
a robust and efficient classifier. These two properties make the
proposed algorithm very attractive. We also describe an
application of such built RBF classifier on data obtained in a
project of buried codes identification. Finally, we compare the
results with other new recognition techniques like fuzzy pattern
recognition.

1. INTRODUCTION

RBF networks have been extensively studied in the past [1] [2].
They consist of three layers, an input, a hidden and an output
one. The input layer corresponds to the input vector feature space
and the output layer to the pattern classes. So the whole
architecture is fixed only by determining the hidden layer and the
weights between the middle and the output layers. For an input
vector X=[x1...xn]

T∈ Rn, and with Nh middle layer neurons, the l th

activation function ϕl(.) is characterised by a centre Cl ∈ Rn and
eventually a width σl, l=1,...Nh. The general equation of an

output neuron j is given by : s X w X bj lj l j
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When the RBF network is used as a classifier, X is a vector of
attributes to be classified and each output sj(X) represents the
membership of X to the class Ωj.. So, when there are m disjoined
classes, the RBF classifier contains m outputs. To assign the
prototype X at a class, these outputs can be directly used by
taking the one which gives the largest membership. But some
other decision rules can also be used.
Different methods to construct classifiers have been presented [3]
[4] but most of the time the algorithm complexity is important.
Here, we present a very simple algorithm directly drawn from the
intrinsic working of RBF net based classifier.

2. ALGORITHM PRESENTATION

2.1 Purpose

The algorithm aim is to subdivide iteratively each of the m basic
classes, disjoined but not necessarily convex, in a set of convex
regions called clusters.
In the RBF network, each cluster is represented by a hidden
neuron and each output sj realises the union of some of them in
order to form the corresponding class Ωj.
The proposed algorithm can be considered as a "fully self-
organised one". In fact, it determines a minimal number of local
units needed to represent the whole classes known from the
learning set. In the same time, it places them in such a manner
that the receptive field induced by each hidden neuron covers
optimally, in some sense, the attribute space. Each of these
receptive fields is controlled by a scale factor, the width σ of the
neuron, which is automatically adjusted according to the closest
classes. So, from only the learning set and after a number of
iterations proportional to the number of defined neurons, the
algorithm gives the size and structure of the RBF net.
Finally, it suffices to apply some least mean squares techniques
to determinate the weights wlj. The RBF classifier is then totally
defined and can be used in a decision making task. And all this
procedure is done without having to set-up any parameters. We
suppose to have a learning set of N patterns Xk, k=1 to N, for
which we know the class, taken among m disjoined classes Ωj,
j=1 to m. During iterations, a cluster l is characterised by its
centre Cl and it is spatially limited in the feature space by an
hyperball of radius proportional to the width σl. These clusters
are placed in two different ways. In the case where they are
owned by different classes, they will be disjoined. In the other
case, they could overlapped themselves in order to cover the
maximum space region with a small number of hyperballs. The
union of the volume delimited by the hyperballs and which
represents the class Ωj is denoted Rl . The algorithm adds new
cluster until each point Xk of the learning set is include in at least
one cluster of its respective class. The method necessarily
converges since, in the worst case where data can not be globally
partitioned, there will be a cluster per each point.

2.2 Algorithm Description

Step 1 : (Initialisation) Define m centres Cl, each one is defined
like the gravity centre of the points Xi ∈ Ωj :
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Step 2 : (Width definition) The width σl of the neuron l is
defined like the half distance between his centre Cl and the

closest centre of an other class : il
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Step 3 : (Search of isolated point) We search the point Xk ∉ Rj

and that is at the maximum distance from Rj :
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no such point, we go to step 4, else the point Xi creates a new
centre defining the class Ωj. A K-means clustering algorithm is
applied to adjust the centres position. Then we go back to step 2.

Step 4 : (Learning) The calculation of the network weights wlj,
which mathematically realises a non convex union of the clusters
defining the class, is made by a least square method. For a point
Xk which belongs to Ωj , the desired outputs si(Xk)=δ(i,j) i=1 to
m.

2.3 Algorithm Illustration

To illustrate the working of the construction algorithm, we
describe its application on a example of three classes. As the
construction algorithm developed use the centre of gravity to
define the first centres in the initialisation step, we chose this
example to show that even if the computed centres of gravity
don't belong to the good classes, the algorithm working reminds
accurate.
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Iteration #0 : Initialisation 3 class -> 3 neurons

Figure 1. Representation of the three classes and of the
first three neurons created with their width.

The figure 1 shows the three classes of the chosen example, the
result of the algorithm initialisation step and the creation of the
first three corresponding neurons with their respective width as
defined in the step 2 of the algorithm.
The result of the first algorithm iteration is presented in the
figure 2. The first iteration can be described as below. We search

the point which is at the maximum distance of one of the three
neurons, then a new neuron corresponding at the belonging class
of the found point is created. The K-means clustering algorithm
is applied to adjust the position of the two same class neurons
centres. Finally, the width of the all four neurons is computed
once again.
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Iteration #1 : 4 neurons after K-means and Insertion of a new centre

Figure 2. Representation of the algorithm first iteration
result.

The final clustering is presented in the figure 3 and it is reached
after 11 iterations. The number of necessary neurons is 14 to get
the linear separation of the three classes.
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Figure 3. Representation of the final clustering.

The last step of the algorithm which represents the non convex
union of each class clusters is shown in the figure 4. The border
lines shown correspond to a membership value of 0,5.



For this example we obtain a perfect good classification level of
100%.
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Figure 4. Representation of the border lines for a
membership value of 0,5.

3. BENCHMARKS

3.1 Databases

Our objective was not to develop a specialised classifier which
only works well on our data but on the contrary we wanted to
obtain a general high performance classifier able to be used on
many kinds of pattern recognition problems. So before using this
algorithm to our application, we test it on a set of databases. The
comparison has been made with the results of an European
project named ELENA [5]. In fact, the databases used in this
project cover a large range of domains. There are artificial
databases like clouds, concentric and gaussian datasets in several
dimensions, and also real databases like the Iris and speech
recognition datasets (all the files can be downloaded at
ftp.dice.ucl.ac.be/pub/neural-nets/elena/databases).
For the gaussian database we have two classes, with 2500
patterns for each class and 8 attributes, and there is a fully
overlapping between them, the centre of gravity is the same for
the two classes. The theoretical Bayes error for this dataset is 9%.
The samples distribution for the concentric database which has
two classes and two attributes for 2500 patterns for each class, is
uniform, there is no overlapping and the boundaries are non
linear. Its theoretical error is 0%.
For the clouds database which has the same constitution that the
concentric one, the samples distribution is gaussian. The first
class is the sum of three different gaussian distributions and the
second one is a single gaussian distribution. There is an
important overlapping between the two classes and its theoretical
error is 9,66%.
The two real databases are the Fisher's "Iris" and the "phoneme"
one.

The "Iris" database is a very famous one in pattern recognition
and numerous references are available. It is composed of three
classes in 4 dimensions and there are 50 patterns per class.
The "phoneme" database was used in the European ROARS
Esprit project and presents difficulties for classification. It is
composed of two classes in 5 dimensions and there are 5404
patterns, 3818 for the first class and only 1586 for the second
one.
For the comparison, it is the Holdout method averaged over five
different partitions of the original database which is used. The
original database is separated in two independent learnset and
testset, each containing half the total available patterns (patterns
used in each partition being always the same for each particular
trial from one classifier to another).

3.2 Classifiers

We compare the results given by the classifier built with our
algorithm with three others neural classifiers (MLP, LVQ,
IRVQ) and with a reference one, the KNN.
The "K Nearest Neighbor" classifier is a very classical one . It is
used here as a reference for the best estimator of the theoretical
Bayes error. It can be shown that the nearest-neighbor rule will
give an error rate greater than the minimum possible such as the
Bayes error, and with an infinite number of samples, the error
rate is never worse than twice the Bayes error.
The first neural classifier compared in our study is the Multi-
Layer Perceptrons classifier. This network, combined with the
backpropagation algorithm, is the most widely know inside the
neural network community.
The second one is the Learning Vector Quantization classifier. It
was proposed by Kohonen, it is a simple adaptive method of
vector quantization. A finite number of prototypes, each one
being labelled with a class identifier, are chosen in the input
space.
The last neural classifier we compare to the proposed classifier is
the IRVQ one. It has been developed in the framework of the
ELENA project. It is a suboptimal Bayesian classifier based on
radial Gaussian kernels which uses an iterative unsupervised
learning method based on vector quantization to obtain a low
memory kernel density estimator, while keeping sufficiently
accurate estimations of probability densities.
More information about these classifiers can be obtained in [5].

3.3 Results

The test used to compare the classifier results is performed, using
for each classifier the optimal parameters for each particular
database, except for our classifier which doesn't need any
parameter to set.
The construction algorithm of RBF classifier we propose here is
not always the best classifier for all the databases.
As it is shown in the figure 5, for the 5 databases, our RBF
classifier obtains the best result three times and the second best
result once. The only one disappointed result is for the clouds
database, we obtain an error percentage of 13.6%, when the
theoretical Bayes error is 9.66%, and the best classifier in this
case, the IRVQ one, obtains 11,7%. The two classes of this
database are too overlapped to realise an efficient union of the
different clusters generated by our algorithm.
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Figure 5. Representation of the classifier results for the 5
chosen databases.

We also notice that the results obtained with the Holdout method
averaged over five different experiments show that the developed
RBF classifier is particularly robust. As a matter of fact, the
difference between the best and the worst level of error
percentage is very small, less than 10% of the average value.
So all these results show that our new algorithm of RBF classifier
permits to obtain a very high performance and robust general
classifier which can be applied on many kinds of pattern
recognition problems with very good results.

4. CODE IDENTIFICATION
The general purpose of our application is to detect and identify
reliably different buried metallic codes with a smart eddy current
sensor [6]. The data are collected by a flat coils metal locator
based on the induction balance principle. This detector is
connected to a mobile measurement system which controls the
data sampling.
A code is built from a succession of different metal pieces
separated by empty spaces. The different codes are obtained by
the combination of different sizes of the metallic parts and empty
spaces.
Due to the codes similarity and the non linear locator answer
with the burying depth, the classification problem is not very
simple. That is why we have developed intelligent methods to
well solve it. Our first methods was based on the fuzzy logic
theory and the Kohonen SOM. As the SOM algorithm gave
disappointing results, we replace it by the new proposed RBF
algorithm.
The methods based on the fuzzy logic theory are the well-known
Fuzzy Pattern Matching (FPM) [7] and the distributed rules (DR)
[8] developed among others by Ishibuchi.
A comparison is made between these different methods and the
proposed RBF classifier.

RBF SOM FPM DR
Error

percentage
6.2 11.3 8.3 7.1

Table 1. Results of code misclassification for the 4
pattern recognition methods implemented.

For a burying depth up to 80cm, we obtain the results given in
the table 1. We can notice that the result of the built RBF
classifier is better than the others, and always without any
specialisation of the construction algorithm.

5. CONCLUSION
The use of incremental RBF networks has been already studied
[9] but here we have presented a new simple incremental or "self-
organised" RBF network algorithm which is able to be used in a
lot of domains without any parameters to set. We have tried with
this algorithm to translate the most simply the RBF network
working.
The results show that the RBF classifier, built simply in the way
we have developed, is very robust and particularly efficient in a
wide range of pattern recognition problems.
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