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ABSTRACT

Modern sounding systems are able to measure mul-
tidimentional backscatter ionograms (MBI). These iono-
grams represent the propagation delay time (Tg) and
the Doppler frequency shift (Fd) against the elevation
angle (�) of the sounding wave and the sounding fre-
quency (Fe). In this paper, we address the MBI inver-
sion issue. More precisely, we investigate the extrac-
tion of the model ionospheric parameters from which
MBI are derived, with techniques combining data fu-
sion with Multi-Layer feedforward neural networks. This
work aims at recovering the parametrized geographical
distribution of the ionospheric parameters in a large cir-
cular area around the sounder. The experiments have
been carried out using MBI simulated with the Chiu
model of ionisation for a single Chapman layer. Bet-
ter results are achieved when a hierarchical network is
used to invert the merged MBI, compared with a direct
inversion using a large network, dropping the average
percentage error on the whole area down to 7%. This
demonstrates the ability of neural networks to produce
information that would otherwise be unvailable.

1. INTRODUCTION

The method of sky-wave backscatter sounding, devel-
opped a long time ago [1][2], consists of receiving
obliquely transmitted HF energy from distant ground
backscatter. The received clutter shows the radiowaves
that propagate from the sounder, are refracted by the
ionosphere, undergo backscatter from the Earth's sur-
face and eventually return to the sounder after a sec-
ond ionospheric refraction. When the radiowave's fre-
quency (Fe) varies in a discrete set, the corresponding
clutters form together the backscatter ionogram (BI),
e.g the group path as a function of Fe. These measures
aim at recovering the parameters of the electron den-
sity pro�le. For this research, the higher ionospheric

layer (F2 layer) is of major interest. Its parameters are
the critical frequency foF2, the altitude of maximum
electron density hmF2, and the semi-thickness of layer
ymF2. The inversion problem focalizes on determining
the triplet (foF2, hmF2, ymF2) from a simple BI. A
classical approach for solving the BI inversion consists
in using the minimum group delay frequency character-
istic (GFC), that is, the leading edge of the BI as input
data [3]. Although the BI is easy to obtain, it produces
a cumbersome inversion problem. As there exist noise
and errors in the measurements , a direct inversion from
the GFC gives many instable solutions. Indeed, even
if noise is absent, the mapping between the GFC and
the ionospheric parameters is non-bijective. In other
words, two similar GFC can represent two very di�er-
ent con�gurations (foF2, hmF2, ymF2). Several numer-
ical methods have been developped to derive steady
solutions[4]. Most authors use perturbation methods
that consist of adjusting synthetic BI computed by ray-
tracing to measured BI. The error is computed in order
to correct the electron density parameters foF2, hmF2,
ymF2 that govern the ray tracing process. To reach
a single solution, constraints on the solution (and its
derivatives) are commonly imposed to the cost func-
tion to minimize. This largely used approach leads to
reasonable results on simulated data but implies sub-
stantial computational costs for accurate ionospheric
models. An original approach was investigated in [8],
using data fusion and neural networks techniques. The
results are probant on simulated ionograms, but the
method requires a set of independent sensors, and two
synchronized sounding stations.

In this paper, we propose to solve the inverse prob-
lem by an original approach in which the measurements
are processed from a single station, in such a way that
the mapping can be directly inverted. We start from
the Delay-Doppler Function (DDF), which represents
the Doppler frequency shift (Fd) and the group delay
(Tg), at a �xed radiowave sounding frequency Fe (�g-



ure 1). We are now at a period when the technology
allows us to precisely measure the elevation angles � of
backscattered rays impinging on the receiving antenna.
With this additional information, we can construct a
three-dimensional DDF, and in such a way, we hope
to get a unique solution to the inverse problem. Be-
sides, we expect this solution to be less sensitive to the
noise on the input data. Moreover, in order to cover
all the daily con�gurations of the electron density pro-
�le, the BI is measured for several sounding frequen-
cies Fe. Collecting the BI for varying Fe provides a
multi-dimensional backscatter ionogram (MBI), repre-
senting more preciselythe ionosphere. The objective
of our study is to go further than assessing the iono-
spheric parameters at one remote geographical point.
Instead, we will estimate a model which represents the
distribution of these parameters in a circular area rang-
ing over 3000 km around the sounder. The critirium
used to measure the performance is the average of the
maximum relative absolute error (MRAE) on a grid of
geographical points in the sounding area.

2 4 6 8 10 12 14

x 10
−3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Propagation time (ms)

D
o

p
p

le
r 

s
h

if
t 
(H

z
)

β = 3 o

β = 26o 

Figure 1: Example of Delay-Doppler function for 12
elevation angles

2. INVERSION OF IONOGRAMS

For the purpose of this research, rather than real iono-
grams, synthetic ones are produced by a ray tracing
software written in our department, which generates a
MBI assuming that the ionosphere is spherically strat-

i�ed, and that the Earth's magnetic �eld and the colli-
sions are negligible. This software simulates the iono-
sphere under variable conditions. These ones can be
used to label the data, hence allowing to use super-
vised networks such as the standard backpropagation
multi layer perceptron.

2.1. Processing of inputs and outputs

Since MBI are multi-dimensional plots, they have to be
reduced to a low size vector before they can be used as
input for a neural network. Indeed, smaller networks
learn faster and reach lower mean square error, at the
condition that the input coding is su�ciently discrimi-
nant. Several studies [9] permit to determine the range
of the sounding frequencies Fe and of elevation angles
� that produce e�cient MBI and exibiting concise fea-
tures. Hence, it seems that 90 points MBI are e�ective,
these points being derived from DDF simulated for 6
sounding frequencies, 5 elevation angles and a �xed az-
imuth.

The backscatter sounding from a single site allows
to collect informations about the remote ionosphere
in all azimuths. Using this advantage, we ambition
to estimate the local geographical distribution of the
plasma frequency foF2 parameter. In that case, the in-
put vector will consist in the fusion of MBI computed
for eight azimuths equally spaced that range over 360
degrees. In order to simulate the behaviour of the foF2
parameter, the phenomenological Chiu model [5] has
proved to be usefull in generating samples for a cir-
cular geographical area ranging over 3000 km around
the sounder. To simplify the inverse problem, we have
to reduce the number of parameters as many as pos-
sible. Hence, local ionospheric parameter distribution
is represented in a concise form by means of a simple
model that matches the geographical variation of elec-
tron distribution. The central position of the sounder
in the sensing zone, suggests the use of polar geograph-
ical coordinates (range, azimuth) instead of cartesian
coordinates (latitude, longitude). Then, a grid of val-
ues of the set (foF2, hmF2, ymF2) is computed for di-
crete ranges and azimuths. A study of these samples,
when varying the local time, the day of the year and
the monthly smoothed Zurich relative sunspot number,
shows that range inuence can be properly described
by a polynomial, while azimuth e�ects can be accu-
rately represented by a trigonometric function (limited
Fourier series). Using these remarks, we propose the
following model for ionospheric parameters f :

f(�; �) = f00 + a1(�) �+ a2(�) �
2 + a3(�) �
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ai(�) =

3X

k=0

ai;k cos(k�) + bi;k sin(k�); i = 1; 2; 3

f00 is the parameter value obtained from a vertical
sounding. The synthetic form of this model reduces the
number of parameters to be estimated by the networks.

2.2. Training and testing data

Five thousand MBI were generated by our software, for
various quiet ionospheric con�gurations. These con-
�gurations, take into account the local time, the day
of the year and the monthly smoothed Zurich relative
sunspot number, but not all combinations of these pa-
rameters will occur in practice. So, invalid combina-
tions can produce irregular, or even blank MBI. This
is why these MBI were sorted out to remove any that
were invalid. The remaining 4840 MBI were then ran-
domly splited into two sets, one for training and one
for testing.

2.3. Neural network design

We selected the RPROP algorithm [6] to train the net-
works, since in our previous experiments it allowed
to reduce network error faster and to a lower value
than other optimization algorithms. From now on, the
main di�culty remains the selection of a suitable neu-
ral architecture for inverting the multi-azimuth MBI
(MAMBI), resulting of the fusion of single-azimuthMBI.
The task consists in assessing the twenty four parame-
ters ai;k and bi;k starting from the MAMBI. Previous
experiments have shown that a single large multilayer
perceptron architecture couldn't succeed in reaching
low accuracy on the estimation of the ionospheric pa-
rameters. Indeed, a task with too many inputs and out-
puts often leads neural network models to poor perfor-
mance, due to numerous local minima and slow conver-
gence. As a consequence, we decide to divide this crude
inversion into small tractable problems, each solved by
low-size neural networks. In that way, the MBI con-
tained in the MAMBI are merged to provide four input
vectors, each of them, concatenates the information of
two opposite azimuths. Four networks were trained to
estimate the polynomial parameters �ting the diame-
tral range evolution for each of the four directions. The
four multilayers perceptrons with the following design
(126:40:10:4), are trained independently. Then, a �fth
(16:40:40:24) network, fuses the outputs calculated by
the four previous networks to produce the 24 parame-
ters describing the local ionospheric distribution. Fig-
ure 2 describes the structure of the networks that were
trained in the course of this research. MBI-1 up to

MBI-4, are the merged MBI corresponding to the four
directions.
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Figure 2: Fusion of MBI using Multilayer Neural net-
works

The performance of the neural modular structure is
reported in �gure 3. This plot shows the cumulative
histogram of the average maximum relative absolute
error over the testing examples. With this representa-
tion, we can see directly the percentage of ionospheric
con�gurations accuratly estimated. We can point out
the quite reasonnable accuracy (7% of relative absolute
error) in 90% of cases, knowing that the entire iono-
spheric distribution is considered here. Clearly, testing
numerous di�erent architectures in the neural modular
system is prohibitive, but forthcoming results where
cooperation between neural nets is used, are promis-
ing. In this method, all the neural nets are trained
simultaneously, providing a more accurate model.

3. CONCLUSION AND DISCUSSION

This work demonstrates the capabilities of the MBI
direct inversion technique as an accurate and stable
tool for determining the local geographical distribu-
tion in an ionosphere modeled by a single F2 layer. To
our knowledge, none other simulated techniques em-
ployed for ionospheric measurements, investigate the
space distribution of the three parameters of the F2
layer over a large geographic area. Our results are
promising, even if they are obtained from a �rst sim-
ple ionospheric model and not from real data. Actu-
ally, the real ionosphere is composed of several layers
and exhibits geographical variations causing horizontal
gradients of ionization. Some authors [7] have consid-
ered the horizontal ionization gradients in their models.
It appears very important to assess these gradients as
they always exist in real ionosphere. These gradients
can be seen as the �rst order momemtum of the local
distribution of F2 layer. In that sense, our investiga-
tions allow to go further since we can derive the distri-
bution of all the F2 layer parameters with a reasonable
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Figure 3: Cumulative histogram of the Average Maxi-
mum Relative Absolute Error (MRAE)

error rate, within a wide circular area centered on the
sounder.
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