
DSP FUN THE GUI WAY

A. Yardim , M.A. Mughal , G.D. Cain and D. Barjamovic

University of Westminster, Department of Electronic Systems, London W1M 8JS, UK

ABSTRACT

Production of Graphical User Interfaces (GUIs)
has been found to be a vital ingredient in
building up a comprehensive MATLAB
framework supporting the learning - and
enjoyment - of DSP topics. We describe some of
the functional and esthetic issues surrounding
the two dozen GUIs we have developed and
used to animate various DSP topics during in-
class demonstrations and in student
laboratories. We conclude that the substantial
development effort needed for a really good
GUI is paid back by the impact on learning and
the enhancement of routine design and
measurement tasks.

MATLAB is so useful, in so many ways, across
a broad range of DSP learning situations that it
is easy to highlight many of its strengths. Apart
from widespread use by our researchers as their
everyday concept-proving tool of choice, our
main interests lie in undergraduate learning
(immediately upon entry to Year 1 of study and
then throughout three years of BEng work), in
Master’s study, and also in Continuing
Professional Development short courses aimed
at practicing Engineers. MATLAB is an
indispensable accelerator of learning and engine
of productivity enhancement at each of these
rungs of our educational ladder.

It is fortunate for DSP aficionados that our
subject is inherently SENSUAL, and that we
can so readily convey high-impact messages
about the intricacies of its various sub-topics by
appealing to a student’s senses of sound and
vision. A noise-contaminated sound passage
played out loud is guaranteed to register its
undesirability more compellingly than a dry

signal-to-noise equation or stark graph. Even
better, the collision and adhesion of two tones
leaping about in an animated spectral display
evokes dynamism and excitement on the part of
a fledgling DSP engineer charged with the task
of unraveling these interfering signals.
MATLAB supplies a framework for readily
enlivening these and classroom demonstration
and laboratory scenarios so powerfully that
modern teaching of DSP need no longer suffer
under the dry mathematical image which used to
unsettle newcomers to the field.

We try to insist that the learning of DSP be
made FUN. In pursuit of this, we use MATLAB
in these various classroom roles:

• “Scratch-pad” trial of concepts on the fly

• “Pause Stories” for automated, pre-canned
expositions (in a “slide show” vein)

• “Sound-file hacking” to gain a quick feel for
processing effects

• M-file creation for small task solution

• Serious m-file utility construction to
augment Toolbox features

• “Control Panel” GUI tool creation for
repetitive use

These usage styles are in increasing order of
sophistication and investment on the part of
academic and support staff. The first two are
inexpensive, but often add spontaneity along
structured lines of exposition. Things start
getting especially interesting with “sound-file
hacking”. This code fragment:

[x,fs]=wavread(’terminat.wav’);
y=[x;flipud(x)];plot(y);sound(y,fs)

is easy for students in a PC-equipped lecture
room to quickly input and grasp, yet never fails
to deliver a few warm chuckles of amusement.
The final three uses incur escalating effort and
seriousness, but deliver far greater learning
benefits. The developer in each case might also
be the student (and certainly in the homework
and project assignment situation that often
happens); more often, dedicated academic effort
behind the scenes has been deployed and the
student is in the happy position of simply
“riding” on what gets provided. Slick, labour-
saving specialist m-files can be pressed into
service so that students can focus on grasping
the concepts, not stumbling over the tools.

Notwithstanding the best efforts of the
development team (building on the great
transparency and self-documenting simplicity
MATLAB brings to the party anyway), we have
frequently been astonished to find very, very
slow rates of code development in abbreviated
in-class jobs or even 3-hour laboratory sessions.
Some students simply cannot amalgamate high-
level concepts and simple coding to do useful
work under pressure of time. Acceleration of
signal handling is a must. Hence our enthusiasm
for Graphical User Interfaces (GUIs).

GUIs are great for setpiece, repetitive tasks. We
like to view them as low-cost items of
dedicated, powerful DSP instrumentation:
“control panels” for unleashing magic. Our GUI
production efforts have been directed both at in-
class demonstration of concepts for making
lectures lively and at close support of design and
measurement. The first usage has been effective
where complex signals have to be visualized,
where z-plane topology needs to be seen, where
pole/zero geometries require crystallization,
where surveying filterbank outputs can
illuminate the signal processing landscape, etc.

We find it handy to have a small selector toolbar
visible for easily invoking the couple of dozen
GUIs we tend to use routinely. This
arrangement (seen in the right corner of Figure
1) gives both an alphabetic ordering and visual

cues to the lecturer (who may be hard-pressed to
recall the name of the intended demo). Figure 1
also exhibits the result of a couple of selections;
partially covered is a 3-d “corkscrew” depiction
of complex exponential signals which has been
immensely helpful in asserting the reality of our
most important complex signals. Also in Figure
1 is slifer - one of our most popular tools for
handcrafted digital filter design, permitting
highly responsive adjustment of individual
coefficient values (here of a digital
differentiator), variation of Frequency Sampling
transfer function values and even non-
equispaced spectral manipulation which
MATLAB's fast handling of Vandermonde
matrix inversion causes to look effortless.

Figure 1. A Small Collage of Our GUIs

Figure 2 shows a view of the z-plane rarely seen
by students elsewhere. Here we have taken the
usual MATLAB coefficient vectors to be
a=[1 0.6] and b=ones(1, 5). The student is able
to horizontally slice the z-function finely
enough to scrutinize the surface perturbation
caused by the pole on the negative real z-axis
while also seeing the DFT evaluations shown
around the unit circle by a stemplot. As
different pole and zero contributions are
imported the student is able to observe the
undulations caused in the z surface and how
these are manifested “at the edge”, where the
DFT of the transfer function resides. Such
potent and usable tools inspire both confidence

in the theoretical ideas and deliver practical
outcomes for meeting tough design specs.
Students react extremely well to the solidity and
reliability that tools such as these represent.

Figure 2. Circular-Slicing a Z-Transform

But can we expect students to design good
GUIs? Certainly such an aspiration is smack on
target for modern groupwork-intensive, creative
student-led engineering learning. Yet our
experience is mixed; several individual projects
have produced superb, highly useful GUIs that
have gone on to become permanent fixtures in
our toolscape. But many have been feeble,
painful exercises too. Far too often students
have difficulty articulating and then
implementing features which are truly useful.
The whole process is complicated by the
inherent difficulty of structuring a GUI. The
exposure to switchyard programming is very
educational, but the mechanics of callbacks and
ponderous syntax are not easy to master for
beginners. Brave attempts like MATHWORKS’
“Guide” are not yet able to simplify
development sufficiently. At the present time,
you have to really want to build a GUI if it's
going to be much of a success.

In developing our GUI outlook for learning aids,
we were greatly influenced by MATLAB’s
demo sigdemo2, which is wonderfully
economical, self-explanatory and useful. This
one example immediately suggests a host of

transform illustrators that could provide good
insight for students; no longer is it necessary for
transform tabulations to be so dry and
uninspiring. We created a “Hilbert Transform
Tour” which both draws together a number of
these elusive, unruly transform pairs (as time-
domain equations), and also animates them so
that the browsing student can, under slider
control, easily modify signal parameters and
appreciate changing patterns and interactions
(especially as manifested in analytic signals).

Filter design also furnishes a wealth of
opportunities for animation, display and
measurement GUIs. MATLAB's filtdemo is a
(hard-hitting) case in point. We have sometimes
found it useful to “soup up” such nice demos
through small modifications that add sensual
impact (say, by incorporating music
processing). And we can go deep, to inspect the
iteration-by-iteration mechanics of filter design
algorithms. Such iterative minutiae can be
fascinating to watch, while also leaving the
student with a feeling of the precariousness of
iteration (especially when convergence fails to
happen) and the potency of closed-form
solutions and matrix formulations.

Many instrumentation tasks cry out for purpose-
built GUIs. This is especially true in the area of
random signal measurement, an arena notorious
for requiring gigantic record length/ensemble
sizes (tens to hundreds of thousands of samples)
before any textbook findings can be validated
convincingly. Here repetitive mechanization
(and some sort of averaging) of random signal
realizations is the focus. So far we have attacked
this topic only by m-file utilities; it is one of our
next targets for GUI development.

What features should a good GUI exhibit? We
think that the envelope of functionality should
be restricted, and obvious to the user. Excessive
comprehensiveness leads to a lumbering GUI
that is neither fish nor fowl (and greatly extends
its development schedule). Its controls and
layout should be friendly and inviting, with
balance and harmony uppermost. Spaciousness

of uicontrol object deployment is always hard to
achieve, and may require deeper “parking” (into
menu items, dialog boxes or popup menus) than
the GUI developer would like. The user should
only rarely be called on to have to push further
down than 3 levels of interaction hierarchy (i.e.,
2 button clicks).

A user should feel the power of the GUI's
operation, and breathe a sigh of relief at not
having to get down to the nitty-gritty of doing
the main underlying coding personally. Any
GUI that's hard to learn to drive will simply be
abandoned in favour of the ease of DIY that
MATLAB always holds out to users
(particularly those who have built up a potent
and familiar suite of specialist m-file utilities).
Any GUI that is mysterious, illogical, unreliable
and burdensome to navigate will incur needless
Operator Fatigue and will breed not just disdain-
but active hatred. Again, such a failed GUI is
headed for the scrap heap.

We think that GUIs come in “three time
flavours”: those that are developed in 3 minutes,
3 days or 3 months. The 3-minute quickie can
only be something simple like adding a slider to
figure window to facilitate observation of
parameter change effects, adding a pushbutton
to invoke sounds or flash colour changes, and so
forth. Such limited aspirations almost always
pay back the effort adequately. At the other
extreme, really ambitious and polished GUI
goals can easily take 3 months or more. Our
experience is that these very comprehensive
GUIs are daunting even for veteran GUImakers
and degenerate into intricate interactions of
control conditions that can be hard to justify
consistently, much less to remember for
maintenance and upgrading.

Our favourite category is the 3-day type of GUI.
Here the mindset is limited to specific horizons
which often prove achievable. Our best GUIs
are up and running (as regards their essential
features) very rapidly. Subsequent fine-tuning
and considered extension make go on over
many months, of course, but the fact remains

that it was a 3-day concept, it gave at least a
limited degree of service in about 3 days, and it
benefited from very early user feedback.
Throughout the process, sketching - and re-
sketching - the control panel layout before
investing in coding proves to be a key factor in
homing in to a good GUI.

Figure 3 shows demoleak - the first GUI to
emerge from our group. This provided our first
view of the dynamic effects of leakage in
spectral analysis as a tone was forced off the
DFT gridpoints, and still provides impressive
testimony to the potency of windowing.

Figure 3. A Dynamic Spectral Analysis GUI

Where then is the “fun” in all this? There is no
doubt that it is the end users (and not the
harassed GUI developers) which stand to have
the bulk of the fun. They have but to test drive
the final product. Our final judgement is
unequivocal: a good GUI is a powerful aid in
breaking down resistance to the mathematical
matters which underpin DSP. A reasonably
good GUI is pretty easy to achieve; a great GUI
is rare, but propels its user to a state of DSP-joy.

ACKNOWLEDGEMENT

We are grateful for the good programming style
and creative energy that Dr. Greg Allen of
James Cook University - father of demoleak and
much more - brought to our GUI factory.

