
SWEETENING SIGNALS AND SYSTEMS WITH SIMULINK

G.D. Cain, M.A. Mughal, A. Yardim and D. Barjamovic

University of Westminster, Department of Electronic Systems, London W1M 8JS, UK

ABSTRACT
Block diagram assembly of simulation
experiments is particularly attractive to students
of signals and systems. SIMULINK 3, when
augmented by specialist DSP/comms blocks that
enhance operator interaction at run time, offers
a uniquely valuable setting for flexible and
powerful “instrument-based” experimentation.
We describe a range of student laboratory
exercises which we have rapidly commissioned
and point out the hurdles developers face when
expanding blockset holdings. New real-time
audio capabilities promise experiments with
special motivating features.

SIMULINK is the block diagram tool in the
MATLAB family of software products. It
permits nearly effortless visual assembly of
complicated signal generators, processing
system elements and measuring “instruments”
into runnable behavioural system simulation
configurations while still retaining access to the
MATLAB Workspace, renowned for its ease of
ready calculations, friendly graph plotting and
rapid development capability for high-level
algorithms. Thus SIMULINK's potential for
accelerating learning of topics in signals and
systems areas is unparalleled.

Once suitable subsystem blocks are created
(often from “component” functional blocks
already supplied in the SIMULINK collection of
“blocksets”) this great promise can start to be
realized. Our experience - once this watershed is
reached - is that SIMULINK does indeed
provide a superb learning vehicle: every bit as
good as the expectations this tool raises.
Students can quickly master the physical
manipulation of blocks and carry through

effective learning programmes in a surprisingly
short time.

The problem comes behind the scenes, in
placing the ready-made infrastructure at the
disposal of the students to begin with. Arriving
“at critical mass” in operation away from
SIMULINK's traditional centre of strength in
control systems did not prove easy for us.
Productive usage in areas such as
communications and DSP requires very much
more (in our view) than the elements currently
furnished in MATHWORKS' Communication
Toolbox or its DSP Blockset. Fortunately,
SIMULINK 3 (which became available to us at
the midpoint of the timeframe covered in this
paper) is a massive improvement on
SIMULINK 2.2, and goes a long way toward
eradicating the difficulties (such as awkward
complex signal handling) that we experienced
when we first started up the SIMULINK
learning curve.

Nevertheless, the investment of effort needed
for effective development capability is non-
trivial and there is much learning required on
the part of the development team to achieve
what is needed. Regrettably, the spectacular
ease of development that mainline MATLAB
enjoys is currently not immediately transferable
into the SIMULINK domain. We could have
benefited greatly from knowledge of vital
“tricks” and interaction with expert courseware
developers in this arena, but did not have such
luxuries in the time available for our project.
This paper relates some of our tribulations and
successes while launching a number of
laboratory exercises over a 7-month segment of
an academic year.

Our project initially focussed on providing a
suite of easy-to-grasp experiments to support the
study of basic signal representation, filtering,
modulation and sampling/reconstruction of
signals. Although our initial deadline (about 6
weeks’ preparation window) centred on a one-
week concentrated offering of this material as
part of an introductory MSc module, the same
material was, from the outset, intended to be
utilized (at a more leisurely pace) at
undergraduate level as well. As a first
development plateau, we settled on creation of
these seven (two-hour) experiments to be
performed via SIMULINK:

(1) Signal-Space Representation of Signals
(highlighting orthogonal basis functions and
vector components in signal space)

(2) Adding Two Signals (showing various
superposition and disjointness cases in both time
and frequency domains)

(3) Experimenting with Periodic Signals and
Bandwidth (moving from Fourier transform to
the special case of Fourier Series; also
instrumenting for several alternative bandwidth
declaration strategies)

(4) Filtering Fun (separating nearby sinusoids
and suppressing bandpass noise)

(5) Modulation Mania (simple AM and
envelope demodulation; phase modulation;
OOK, PSK and FSK)

(6) A Sampler of Sampling (essence of
spectral replicating and filtering to reconstruct;
audible aliasing; offset sampling)

(7) A Hilbert Transform Tour (what these
odd transforms look like; use in SSB-AM and
lowpass filter structures)

Experiments (2)-(5) were the most successful,
resulting in most tasks being achieved by most
students in the session time available. Not
surprisingly, the first and last experiments
proved least satisfactory due to the inherent

difficulty of their subject matter, with
Experiment (6) falling somewhere in between.
In each experiment there were either 3 or 4 tasks
requiring construction or modification of a
SIMULINK model. Each task took form from a
colour-coded library (where the given
component blocks resided), so it was easy to see
at a glance how far each group of students had
progressed.

Figure 1 shows a specimen solution to the
second task in Experiment (4). Notice that, apart
from the summer, every component is a non-
standard block. The burden of massive
augmentation of the standard library offering
was undertaken because we felt each signal and
noise generator needed to have interactive
parameter control at runtime if we were to
obtain the “feel” of true equipment-based
laboratory experiments. (Sadly, SIMULINK
2.2.1 - and later SIMULINK 3 -provided us with
only a single block - “slider gain” - with non-
static interaction capability.)

Figure 1. Filtering a Signal Embedded
in Bandpass Gaussian Noise

Figure 2 displays a solution encountered in
Experiment (6), where replicated spectral shapes
can be observed on the second signal analyzer
trace. Again, almost all blocks were newly

constructed so as to obtain the experimental
control we wanted. Our main work, then, was
fabrication of specialist blocks. Whenever
possible, these featured sliders and edit boxes for
parameter control. For instance, our rectangular
pulse generator has 4 sliders (amplitude, pulse
width, pulse repetition period and pulse offset).
We produced a library of some 52 blocks (over a
very hectic 6-week period) that could deliver the
sort of interactivity we felt was necessary. We
found that icon plots of gains and signal shapes
were highly useful since these provided students
with valuable visual cues as to which block was
undergoing parameter adjustment. To our
amazement, all this stood up to some 420
student-hours of usage without faltering! This
just goes to show the inherent solidity of the
SIMULINK environment. If you provide a
palette of system components that meet your
desires, the SIMULINK framework will deliver
the performance sought, most admirably!

Figure 2. Specimen Experimental Task of
Performing Sampling and Reconstruction

The challenge in working with SIMULINK is to
move from the block-oriented DSP approach
used in MATLAB working to a stream
processing approach. The tack we adopted was
to employ buffering so that all our signals were
(apart from parameter-tuning transients and
purposely injected noise) periodic. This gave the
feel of stably-triggered oscilloscope operation
and a general re-enforcement of standard

equipment-realized experimentation that
students had experienced elsewhere. All this
necessitated two categories of block
development: buffered (like in signal generators
and analyzers) and instantaneous (such as
rectifiers and filters). This distinction is a bit
subtle and not too natural, yet strangely no
student appeared to have met difficulty in
smoothly invoking the two classes of blocks
whenever needed.

Following our first frantically-prepared (but
gratifying) SIMULINK laboratories, we settled
down to weaving this powerful capability into
all our DSP offerings. From October 1998 to
mid-March 1999 we carried through a fairly
ambitious programme:

• Baseband Data Communications - 2 labs at
PG/ Industry level: Pulse shaping, Nyquist
filters & noisefree data patterns; Nyquist,
Root-Nyquist and optimal filters fighting
noisy data patterns (40 student-hours)

• Baseband Signal Shaping - 1 lab at UG
level: Eye diagrams on holding scopes (87
student-hours)

• TOUCHTONE (DTMF) Detection - 1 lab at
PG/ Industry level (30 student-hours)

• TOUCHTONE (DTMF) Detection - 1 lab at
UG level (84 student-hours)

Thus, a total of twelve laboratory sessions
(many of them run multiply to allow small-
group work) were commissioned, clocking up
over 650 student-hours of operation. All
laboratory assignments were paperless, with
negligible prior preparation on the part of the
students. In addition, we gained and utilized a
repertoire of SIMULINK vignettes for spicing
up in-class demonstrations.

In building all this experimental framework our
team has expanded the early specialist block
library to well over 160 blocks. It is felt that
now a comfortably wide range of tasks can be
supported and that many useful new
experiments could be devised within the present
resources.

Figure 3 provides a preview of our newest sorts
of experiments. Here we take an audio signal
from a CD soundtrack, process it and play it out
in real time using the on-board PC sound card.
Although the processing possible at this early
juncture is severely constrained (here we shape
our noise contribution with a two-pole resonator
and later combat it with a 31-coefficient FIR
bandstop filter), the new audio handling blocks
and the power of frame-based filtering permit
(barely) real-time deadlines to be met. We plan
to launch a number of short, sharp experimental
tasks centred around such appealing sound
effects.

Figure 3. Real-Time Audio Enhancement

Our experience in developing blocks has
highlighted these issues:

• What should the “granularity” of a good
block be? (Too all-embracing functionality
erodes user confidence, while too low-level
constructs make for models that are
unwieldy and burdensome to wire and
maintain)

• How much “detail hiding” in masked
subsystems is healthy?

• How deep should a user need to push in
setting parameters of a block (shielding
users from excessive control obligations)

• How to enhance model clarity/self-
documentability?

• How can powerful GUIs be smoothly linked
in to masked block control?

• What guides buffering tradeoffs when audio
signals are handled in experiments?

Library navigation emerged as a common
annoyance. It is all too easy (even with the new
block browser) to get diverted to a lengthy
search for blocks in various remote blocksets
locations. Our approach to easing this problem
for our students was to provide a palette of
block types exactly adequate to permit task
solution, distancing our students from the wider
body of blocks available as standards or indeed
from our full specialist library. This greatly
promoted focus and doubtless helped maintain a
brisk pace of experiment performance.

Many are the difficulties that face developers of
specialist blocks. But, based on the work we
have carried out, our conclusions are clear:
when development hurdles are overcome and
powerful, proven blockset elements are
available for use, a diverse portfolio of
laboratories can rapidly be built up. In the space
of a couple of hours students can move from
basic jobs to very challenging undertakings.
When all the supporting infrastructure has all
been done right, SIMULINK offers an excellent
and exciting experimentation environment that
students enjoy using.

