
RAISING THE LEVEL OF ABSTRACTION:
A SIGNAL PROCESSING SYSTEM DESIGN COURSE

Brian L. Evans and G�uner Arslan

Dept. of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, 78712-1084 USA

E-mail: fbevans,arslang@ece.utexas.edu

ABSTRACT

Signal processing systems are inherently heterogeneous.
They often contain a mixture of �ltering, communication,
and control algorithms implemented by a variety of tech-
nologies such as digital hardware, software, and analog cir-
cuits. Modern system-level design manages heterogeneity
by �rst decoupling speci�cation from implementation and
then decomposing the speci�cation into a hierarchy of sim-
pler block diagrams. Each block diagram can be associated
with a di�erent set of formal rules governing its behavior, so
the hierarchical composition becomes heterogeneous. The
same system speci�cation can be executed for simulation or
synthesized into a variety of implementations. In this paper,
we describe a graduate-level signal processing system design
course that presents this modern approach. The course cov-
ers block diagram modeling, algorithm speci�cation, system
simulation, and system synthesis. Students gain hands-on
experience by modifying university and commercial system-
level CAD tools. This paper proposes steps to transition
this course into the undergraduate curriculum.

1. INTRODUCTION

Signal processing systems implement multiple styles of algo-
rithms (e.g. �ltering, modulation/demodulation, and feed-
back control) using a variety of technologies (e.g. digital
signal processors, �eld-programmable gate arrays, micro-
controllers, application-speci�c integrated circuits, and op-
erating systems). Teaching signal processing systems often
reduces to courses that target one style of algorithm and/or
one implementation technology. For example, students in a
real-time digital signal processing laboratory might develop
software for a single digital signal processor to implement
a real-time system, e.g. a voiceband modem [1]. Students
in a digital VLSI course would either learn transistor-level
layout using Magic or synthesis of designs using tools from
Synopsys, Mentor Graphics, or Cadence.

Modern system-level design manages heterogeneity by
�rst decoupling speci�cation from implementation and then
decomposing the speci�cation into a hierarchy of simpler
block diagrams, as shown in Fig. 1. Each block diagram

This research was supported by a US National Science Foun-
dation CAREER Award under grant MIP-9702707 and the US
Defense Advanced Research Projects Agency under DARPA
Grant DAAB07-97-C-J007.

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow

Figure 1: Heterogeneity in the top-down design ow of com-
plex systems. Drawing is copyright c 1994 by Edward A.
Lee. Used by permission.

can be associated with a di�erent set of formal rules, called
a model of computation, to govern its behavior. Models of
computation that could be used image and video processing
systems are listed in Table 1. Ideally, the same system
speci�cation could be executed for simulation or synthesized
into a variety of implementations.

We introduce a new graduate course to present mod-
ern techniques for the design and implementation of signal
processing systems. The course raises the level of abstrac-
tion to specifying, simulating, and synthesizing entire signal
processing systems. In the course, the student

� learns implementation-unbiased models of computation,

� composes these models to specify complex systems

� simulates complex heterogeneous systems, and

� synthesizes systems onto hardware/software technologies.

Students gain hands-on experience by modifying two system-
level design environments: Ptolemy from the University of
California at Berkeley and the Advanced Design System
from HP EEsof. All of the notes, homework assignments,
review material, and past student project reports for the
class are on the Web at

http://www.ece.utexas.edu/~bevans/courses/ee382c/



Subsystem Model of Computation
audio processing 1-D dataow
digital image processing 2-D dataow
image/video resampling m-D multirate dataow
user interface synchronous/reactive
communication protocols �nite-state machine
digital control dataow
image understanding knowledge-based control
scalable descriptions process networks

Table 1: Models of computation for describing the signal
processing, communications, and control aspects of image
and video processing systems.

Table 2 lists the lectures in the course. Section 2 de-
scribes the �rst six lectures on system-level performance,
design, and speci�cation. Section 3 discusses models of
computation. Section 4 describes algorithms for scheduling
models of computation for simulation and synthesis. Sec-
tion 5 overviews the system-level design environments used
in the course. Section 6 proposes steps to transition this
new graduate course into the undergraduate curriculum.
Section 7 concludes the paper.

2. INTRODUCTORY LECTURES

The �rst lecture, \System Performance Measures," de�nes
an embedded system as the \part of a product with which
the end user does not directly interact or control." Con-
straints on the design and implementation of embedded
systems often include weight, volume, power consumption,
and economic cost. Concerning power consumption, the
course surveys the performance of of the four major bat-
tery families in embedded systems (NiCd, NiMH, Li+, and
Zn Air). It also gives the power consumption of two lead-
ing processors| Intel's Pentium with MMX and the Texas
Instruments TMS320C62x VLIW Digital Signal Processor
(DSP)| to show how power hungry those processors are.
The �rst lecture points out that it takes about 1 kg of
Lithium Ion batteries to power an 266 MHz Pentium Pro-
cessor for 22 hours or a 120 MHz TMS320C62x processor for
96 hours. Yet, both processors post nearly identical bench-
marks on digital signal processing algorithms. This raises
the issue that clock speed and MIPS are not particularly
meaningful measures of performance.

The \System Level Design" introductory lecture de-
scribes system-level design s a way to coordinate the execu-
tion of and communication between subsystems. System-
level design concerns cosimulation of a system speci�cation
that may be a mixture of hardware components, software
components, and algorithms; cosynthesis of a system speci-
�cation onto a speci�c hardware and software architecture,
possibly including the generation of operating systems; and
codesign of a hardware and software architecture best suited
for a class of systems (e.g. video compression). System-
level design seeks to meet global system-level constraints
on throughput and delay, while possibly minimizing area
and power: these are global optimizations. Next, these
global optimizations are contrasted with the local optimiza-

Topic Lectures
Introduction System Performance Measures

System-Level Design
Digital Signal Processors y
Block Diagram Languages I
Block Diagram Languages II
Block Diagram Languages III

Models of Dataow Modeling
Computation z Synchronous Dataow (SDF)

Boolean Dataow
Dynamic Dataow
Process Networks
Timed SDF
Multidimensional SDF
Cyclo-Static Dataow
Discrete Event
Synchronous/Reactive
Finite State Machines (FSM)

Scheduling Introduction to Graph Theory
Algorithms Introduction to SDF Scheduling

SDF Looped Scheduling
Multiprocessor SDF Scheduling
Synthesis of FSMs

Composition of Hybrid FSMs
Models Mixing FSMs and Dataow Models
Standalone Native Signal Processing
Topics Hardware/Software Codesign

y Also introduces 1-D interpolation and decimation.
z Discusses simulation and synthesis of each model.

Table 2: Each lecture is 75 minutes long. Five additional
lecture periods are used for the two midterms and student
presentations.

tion performed by compilers for software or manually in cell
designs in VLSI libraries. Optimization requires the forma-
tion of a cost function which in turn relies on measures.
Measures can be estimates of complexity or results of an
implementation generated by another CAD tool.

The third lecture covers the architecture of traditional
digital signal processors. Traditional DSP processors, such
as the Texas Instruments TMS320C54x, the Analog Devices
SHARC, and the Motorola 56xxx families, have an equally
small amount of on-chip program and data memory. Hence,
when synthesizing code for these processors, a CAD tool
should generate software that uses a minimum but equal
amount of program and data memory. This turns out to be
an NP-complete problem, as addressed in Section 4.

The next three lectures concern the use of block di-
agrams in engineering| circuit schematics, computer ar-
chitecture, control theory, signal processing, and commu-
nication. Block diagrams enable a designer to divide large
complex designs into smaller simpler designs using a visual
syntax. The interaction between blocks in any subsystem is
determined by a model of computation. Several models of
computation are described in more detail in the subsequent
lectures.



3. MODELS OF COMPUTATION

This course discusses dataow, discrete event, synchronous,
reactive, process networks, and �nite state machine mod-
els of computation. This class presents each model in de-
tail including its strengths, weaknesses, applications, and
mathematical basis. The models of computation discussed
in this class, however, do not make any assumptions about
the linearity, time-invariance, or memory usage of compos-
ite blocks in the block diagram.

3.1. Dataow

In the dataow model, a signal is a sequence of tokens and
an actor maps input tokens onto output tokens. A set of �r-
ing rules specify when an actor can �re which means a con-
sumption of an input token and a production of an output
token. A sequence of �rings is called a Dataow Process.
The strengths of this model are the following:

� well-suited for data-intensive (signal processing) al-
gorithms,

� loose synchronization,

� determinate under simple conditions, and

� maps well to hardware and software.

The model has one weakness:

� inappropriate for control-intensive systems.

Many avors of dataow graphs exist. The course discusses
the following three: Synchronous, Boolean, and Dynamic.

3.1.1. Synchronous Dataow

In Synchronous Dataow (SDF), all computation and com-
munication can be scheduled statically. An SDF graph can
always be implemented in �nite time using �nite memory.
Thus, an SDF graph can be executed over and over again
in a periodic fashion without requiring additional resources
as it runs. This type of operation is well-suited to digital
signal processing and communications systems which often
process an endless supply of data.

An SDF graph consists of nodes and arcs. Nodes rep-
resent operations which are called actors. Arcs represent
data values called tokens which stored in �rst-in �rst-out
(FIFO) queues. The word token is used because each data
values can represent any data type (e.g. integer or real) or
any data structure (e.g. matrix or image).

SDF graphs obey the following rules:

1. An actor is enabled for execution when enough tokens
are available at all of the inputs.

2. When an actor executes, it always produces and con-
sumes the same �xed amount of tokens.

3. The ow of data through the graph may not depend
on values of the data.

Because of the second rule, the data that an actor consumes
is removed from the bu�ers on the input arcs and not re-
stored. The consequence of the last rule is that an SDF
graph may not contain data-dependent switch statements
such as an if-then-else construct and data-dependent itera-
tions such as a for-loop. However, the actors may contain
these constructs because the scheduling of an SDF graph is
independent of the what tasks the actors do.

3.1.2. Boolean Dataow

Unlike Synchronous Dataow, Boolean Dataow allows con-
ditional ow of data in a graph. Boolean Dataow is essen-
tially Synchronous Dataow with addition of conditional
switch (demultiplex) and select (multiplex) actors. Bool-
ean Dataow is Turing equivalent, so not every Boolean
Dataow graph can be executed in �nite time using �nite
memory. Heuristics can be used to cluster some Boolean
Dataow graphs into clusters whose input/output behavior
obey Synchronous Dataow semantics. Clusters are stat-
ically scheduled much like Synchronous Dataow graphs,
and unclustered actors are dynamically scheduled.

3.1.3. Dynamic Dataow

Dynamic Dataow is a combination of Synchronous and
Boolean Dataow plus its own actors which have a wait
port. Enough data must be present on the wait port to
be enabled. The minimum amount can change from �ring
to �ring. Other ports obey Synchronous Dataow seman-
tics. The Boolean input for the Switch and Select Boolean
Dataow actors is a wait port of one token. Dynamic
Dataow requires run-time scheduling.

3.2. Discrete Event Models

In discrete event systems, changes in system behavior are
marked by discrete occurrences or events, e.g. VHDL, Spice,
OpNet, Bones, SimuLink, and the Discrete Event (DE) do-
main in Ptolemy. Events consist of a token and a time
stamp. A token can be a scalar value, a matrix, a data
structure, and so forth. The time stamp might be a single
oating-point number (Spice, Ptolemy DE domain) or con-
sist of an ordered pair of integers (VHDL). The scheduler
runs the simulation by maintaining a sorted record of all of
the time stamps of the events in the system, and advances
time to the next time stamp. Thus, there is a total order-
ing between all events| given any two events, we can tell
if they occur simultaneously or after one another.

The �ring rule for when a block is active is that (new)
data must be present on at least one of the inputs. Accord-
ing to these rules, source blocks are never �red. Instead,
source blocks must put the events they produce in the global
record of all of the time stamps maintained by the sched-
uler. This will be the �rst of many cases in which discrete
event blocks must interact directly with the scheduler| un-
like Synchronous Dataow, the blocks and the scheduler are
no longer independent.

The strengths of the Discrete Event model are the fol-
lowing:

� Natural description of asynchronous digital hardware,

� Global synchronization,

� Determinate under simple conditions, and

� May be simulated under simple conditions.

The weaknesses are the following:

� Expensive to implement in software, and

� May over-specify or over-model systems



3.3. Synchronous/Reactive Models

The objective of a synchronous/reactive model is to aid in
designing real-time embedded controllers using concurrently-
executing communicating blocks. Stephen A. Edward adopts
a heterogeneous approach that allows the blocks to be spec-
i�ed in any language, provided their interface conforms to
the model [2]. This allows subsystems to be written in
the most suitable language, simplifying the designer's task.
Reactive systems must run at the speed of their environ-
ment, and when something happens in these systems is of-
ten as important as what happens. For this reason, the
synchronous approach has been developed, allowing control
over system timing to be as precise as control over system
function. This approach relies on the synchrony hypothe-
sis, which assumes a system runs in�nitely fast. This breaks
time into a sequence of discrete instants and provides global
synchronization.

Stephen A. Edwards presents a new system description
scheme that combines synchrony with heterogeneity [2]. He
formally present the semantics, which are complicated by
the possibility of zero-delay feedback loops, and present an
e�cient, predictable execution scheme based on chaotic it-
eration toward a least-�xed point solution, along with re-
sults that show it practical for medium-sized examples.

The major strengths of this model are the following:

� Appropriate for control intensive systems,

� Tightly synchronized,

� Determinate in most cases, and

� Maps well to hardware and software.

The weaknesses are the following:

� Overspeci�es computationally-intensive systems,

� Compromises modularity,

� Causality loops are possible, and

� Causality loops are hard to detect.

3.4. Process Networks

Process networks is a model of computation in which mul-
tiple parallel processes can execute simultaneously. The
model uses a directed graph notation, where each node rep-
resents a process and each edge represents a one-way FIFO
queue of data words. A producer node inserts data into the
queue, while a consumer node removes them. This model is
natural for describing the streams of data samples in a sig-
nal processing system. Consumers are blocked when they
attempt to get data from an empty input channel. However,
queues are of in�nite length, so producers are not blocked.
This can cause unbounded accumulation of data on a given
queue. This model is determinate: the results of the compu-
tation (the data produced on the queues) does not depend
on the �ring order of the processes. The problems of deter-
mining whether a process network will terminate, or can be
scheduled with bounded memory are undecidable.

The major strengths of this model can be listed as

� Maps easily to threads, but much easier to use

� Loose synchronization

� It is determinate under simple conditions

� Implementable under simple conditions

� It is Turing complete in the sense of being expressive

and the weaknesses are

� Control intensive systems are hard to specify

� Deadlock and bounded memory are undecidable

3.5. Finite State Machines

Finite state machines are behavioral view of sequential cir-
cuits. They describe the transitional behavior of these cir-
cuits. Finite state machines have two major representa-
tions, State Transition Graphs and Tables. Both represen-
tations are very similar, they show the output and the new
state for every possible input and previous state. Specifying
Finite State Machines (FSMs) is important in formalizing
the design of network protocols and embedded controllers.
Traditional FSMs are very close in abstraction to the im-
plementation, and su�er from many weaknesses:

� An exponential explosion in the number of states
when composing substates;

� Di�cult to modify complex designs since hierarchy is
not present;

� Does not easily handle global control signals such as
reset and halt; and

� Computation occurs in a single path, so there is no
support for concurrency.

The goal is to �nd models of computation that overcome
these drawbacks. Hierarchy is key for managing design
complexity and preventing a state space explosion when
composing substates.

Models of computation for FSMs may have graphical
and textual syntax. Some �nite state machines are easier
to describe textually and some are easier to describe graphi-
cally. Graphical speci�cation languages include Statecharts
and Argos, and textual programming languages include Es-
terel. Statecharts, Argos, and Esterel support hierarchy,
concurrency, and various communication models. All three
frameworks are used to specify reactive systems (systems
that respond to the environment at the speed of the envi-
ronment). All three are based on the synchrony hypothesis
(all communication and computation is instantaneous).

4. SCHEDULING ALGORITHMS

After spending a lecture on introductory material of Graph
Theory the scheduling problem is introduced. The �ring
rules for dataow graphs, synchronous/reactive systems,
and �nite state machines impose partial ordering constraints
on the actor �rings. Scheduling algorithms constrain the
partial ordering in order to meet the following practical ob-
jectives:

� scheduling cost: Scheduling decisions should be made
as much as possible at compile time.

� bounded memory: The total number of unconsumed
tokens should be bounded throughout the execution
if this is possible for the given graph.

At the same time, we want to avoid arti�cial deadlock:



� deadlock: The graph should not halt if there are en-
abled tasks.

For many models of computation, the scheduling problem is
NP-complete| no algorithm can schedule a graph in poly-
nomial time in the size of the graph. One exception is that
the scheduling for the Synchronous/Reactive model can be
performed in quadratic time.

For SDF, every valid SDF graph can be executed for in-
�nite time in bounded memory, and all scheduling decisions
can be made at compile time. Compile-time scheduling is
NP-complete. That is, there is no known algorithm that
can schedule every possible SDF graph in polynomial time
in the size of the graph (number of functional nodes plus
the number of arcs connecting the nodes). In fact, class-S
uniprocessor schedulers and multiprocessor schedulers that
�rst have to convert the SDF graph into a directed acyclic
graph (DAG) of precedences require exponential time in
the worst case. This course discusses two heuristics for op-
timizing uniprocessor schedules and one heuristic for opti-
mizing multiprocessor schedules. The uniprocessor heuris-
tic will always �nd the optimal schedule for a large subset of
SDF graphs. The multiprocessor heuristic clusters an SDF
graph into a two-level hierarchy, schedules each child onto
one processor using one of the two uniprocessor heuristics,
and schedules the parent using a traditional multiprocessor
scheduler based on DAG.

5. SOFTWARE TOOLS

The students use two system-level CAD tools: Ptolemy
from UC Berkeley and the Advanced Design System from
HP EEsof. In 1990, Ptolemy was initiated as a combination
of the Synchronous Dataow and Discrete Event models of
computation. More models of computation can be added
to Ptolemy by simply de�ning how the model passes data
and control to a universal interface. Hence, the interac-
tion between every possible pair of models does not have
to be de�ned. Ptolemy 0.7.1 can cosimulate 11 models of
computation, including those described above. Ptolemy can
synthesize Synchronous Dataow graphs onto multiple tech-
nologies, but it is relatively weak at synthesizing complex
systems onto multiple technologies. Students use Ptolemy
to explore the seven models of computation listed above
and their interaction. They also use Ptolemy to synthesize
C code, Motorola 56000 DSP assembly code, and multiple
styles of VHDL, as well as mixed implementations, all from
Synchronous Dataow Graphs.

6. TRANSITION TO THE UNDERGRADUATE LEVEL

6.1. Pre-Requisites, Grading, and Textbooks

The course is currently geared for a �rst-year graduate stu-
dents who has taken a class in signals and systems and data
structures and algorithms, knows object-oriented program-
ming, and has experience with either embedded hardware
or software. An embedded software course might develop
applications for microcontrollers and digital signal proces-
sors. An embedded hardware course might design digital or
analog ICs. Neither a digital signal processing course nor a
real-time systems course is a pre-requisite.

In the course, students analyze material by complet-
ing homework assignments and studying for tests. They
synthesize material by completing a literature survey and
a computer implementation, each worth 25% of the �nal
grade. Students give presentation for both the literature
survey and �nal report. The two midterms are each worth
20%, and homework is 10%. There is no �nal exam. The
two course textbooks [3, 4] are written at the graduate level.

6.2. Making the Transition to a Senior Elective

As an undergraduate course, less time should be spent on
the mathematical framework underlying the models of com-
putation. Hence, the book Software Synthesis Using Data-
ow Graphs would still be appropriate, but the other text-
book Lattices and Partial Order would be too advanced
as it requires a real analysis background. The 50% project
would still be the catalyst for the students to gain the extra
hands-on experience with system-level CAD tools, but the
scope of the implementation should be reduced to an ap-
propriate level. The pre-requisites can already be met by a
�rst-semester senior in many Electrical and Computer En-
gineering curricula, including at UT Austin, UC Berkeley,
and the Georgia Institute of Technology.

7. CONCLUSION

Students learn how to manage the fundamental problem
facing the design of signal processing systems: heterogene-
ity. By decoupling the speci�cation from the implementa-
tion, alternative implementations can be considered for the
same speci�cation. If a new implementation technology ap-
pears, then a CAD tool could be modi�ed to synthesize the
same speci�cation into the new technology. Models of com-
putation have a solid mathematical basis. They support
heterogeneity in that they can be composed to characterize
heterogeneous systems. They are general in that both hard-
ware and software can be synthesized from them. Dataow
models receive the most attention as they are well-suited for
describing data-intensive signal processing algorithms. Fi-
nite state machines and synchronous/reactive models, pri-
marily used for control, are also covered. The students
use Ptolemy from the University of California and the Ad-
vanced Design System from HP EEsof to evaluate models
of computation and scheduling algorithms.

8. REFERENCES

[1] S. A. Tretter, Communication system design using
DSP algorithms: with laboratory experiments for the
TMS320C30. Plenum Press, 1995.

[2] S. A. Edwards, The Speci�cation and Execution of Syn-
chronous Reactive Systems. PhD thesis, University of
California, Berkeley, 1997.

[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Soft-
ware Synthesis from Dataow Graphs. Norwell, Mas-
sachusetts: Kluwer Academics Publishers, 1996.

[4] B. Davey and H. Priestley, Introduction to Lattices and
Order. Cambridge, United Kingdom: Cambridge Uni-
versity Press, 1990.


