
EXPERIENCES IN A REAL-TIME DSP DESIGN COURSE

Mehmet Zeytino�glu and N.W. Ma

Department of Electrical and Computer Engineering

Ryerson Polytechnic University,

Toronto, Ontario, M5B 2K3, Canada

e-mail: fmzeytin,bmag@ee.ryerson.ca

ABSTRACT

This paper presents our experience at Ryerson Poly-
technic University in designing and o�ering a fourth
year DSP course which emphasizes the teaching of an-
alytic tools to study and design DSP systems as well as
the real-time implementation of such systems. One of
the inherent advantages of an integrated DSP course is
the ease with which abstract mathematical algorithms
can be brought to life through real-time implementa-
tion.

We �rst discuss our philosophy which determined the
approach we have taken in structuring the DSP course
and in particular its laboratory component. We present
the course outline, the laboratory set-up, the experi-
ments and the projects. In introducing the laboratory
experiments and projects we highlight the advantages
of real-time implementation over simulations.

1. INTRODUCTION

Digital Signal Processing (DSP) is one of the most
rapidly developing disciplines that has emerged from
within electrical and computer engineering in the last
40 years. The unabated technological innovations in
digital computers and microprocessors paved the way
for the migration of traditional analog signal processing
systems to a digital world. While many analog signal
processing techniques can be translated directly to a
digital domain, a number of novel digital signal pro-
cessing algorithms opened up the possibilities which
were hitherto unheard of. One can cite audio, image,
and video processing and compression as examples of
such exciting new algorithms.

In parallel with the ever increasing speed and pro-
cessing power resulting from advances in semiconduc-
tor manufacturing, researchers from around the world
continue to design and implement powerful signal pro-
cessing algorithms. Major developments in DSP have

proceeded along three distinctly identi�able paths. In
particular, these are:

� development of new DSP algorithms (MPEG);

� development of a theoretical framework for the under-
standing of discrete time signals and systems (wavelet
theory vs. �lterbanks);

� development of integrated circuit architectures suit-
able for eÆcient DSP (recon�gurable DSP architec-
tures, FPGAs with DSP core).

Of course, the expanding interest in DSP is also the
result of the diversity of DSP applications: communi-
cations (cellular and mobile communications), automo-
tive engineering (engine management systems for safety
and fuel eÆciency), consumer electronics (compact disk
players, HDTV), computing (head positioning systems
in computer hard disks, ATM switches) are just few of
the application areas where DSP has made signi�cant
inroads. Consequently, interest in DSP related courses
at an undergraduate, graduate and professional devel-
opment levels has also increased.

Typical university level DSP courses range from a sys-
tem level course where topics are covered using a block
diagram approach in a simulated environment to a real-
time oriented course where the emphasis is on real-time
implementation and hardware architectures.

While the ideal solution may be to cover the material
in two separate course, one introducing the theory and
the other implementation issues, the already crowded
undergraduate curricula usually does not allow such
luxuries. If there is only a single DSP course in the
curriculum adhering to one speci�c approach, this may
have serious drawbacks. DSP theory is developing very
rapidly; hence there is an increasingly larger volume
of theoretical fundamentals to be conveyed. Yet, the
increasing signi�cance of real-time implementation of
DSP algorithms also requires a solid understanding of
hardware architectures suitable for DSP.

In this paper, we present our experience in structuring
an undergraduate DSP course. We will �rst discuss
our philosophy which determined the approach we have
taken in structuring the DSP course and in particular
its laboratory component. We present the course out-
line, the laboratory set-up, the experiments and the
projects. In introducing the laboratory experiments
and projects we highlight the advantages of real-time
implementation over simulations.

2. COURSE STRUCTURE

Our approach to this course has been very much a re-
ection of our educational philosophy as faculty mem-
bers within a polytechnic university. The course is of-
fered in a 3 hours per week lectures and 3 hours per
week laboratory format over 13 weeks for a total of 78
contact hours. This gave us exibility in formatting
the course in a way which emphasizes implementation
issues in the projects/laboratory work while simultane-
ously being able to o�er a full and rigorous coverage of
the discrete system fundamentals. While working on
the projects students spend on the average 2{3 hours
per week on this course outside of the regularly sched-
uled contact hours.

We o�er this DSP course as a 4th year technical elective
course. It is a very popular course typically selected by
over 85 students, which roughly corresponds to ninety
per cent of the 4th year enrollment. All students se-
lecting the DSP course would have completed two (rele-
vant) third year courses: Signals and Systems and Mi-

croprocessor Systems. We build on the material cov-
ered in these courses. Students would also completed
courses on computer architecture, communication and
control systems, such that examples from these topics
can be introduced.

2.1. Our Philosophy

From the very beginning our main goal has been to
design a course which provides the students with a
solid understanding of DSP fundamentals. This ap-
proach is essential for life-long learning where students
after graduation will be able to upgrade their skills
and knowledge in this ever evolving �eld. The follow-
ing themes, however, spawned lengthy debates through
which the course structure started to emerge.

� Simulation vs Real-Time Implementation. We
wanted the student to be familiar with real-time im-
plementation issues. Testing various DSP algorithms
in a simulated environment is tremendously useful to
understand the concepts and to observe the interrela-
tion among parameters that typically govern DSP algo-

rithms; for example, long-term and short-term predic-
tion �lters, e�ects of pole-zero locations on the system
behaviour, �ltering. However, implementation issues
(such as bu�ering, block processing, interrupt driven
processing) can only be understood when the student
works on a real-time implementation. Therefore, in de-
signing the course we relied on simulations (mostly in
a Matlab environment using Mathworks supplied or in-
house developed toolboxes) in support of the lectures.
In the laboratory component of the course we operated
exclusively with real time implementation (see the lab-
oratory projects section 2.3 for further details).

� Programming in C vs Assembler. Programming
in a high-level language such as C has the inherent ad-
vantage of easy transportability. Yet the appreciation
of the DSP architecture is only possible by program-
ming in assembler where the student has the opportu-
nity to explore the processor architecture highly tuned
for eÆcient digital signal processing. A good example
is the FIR �lter implementation where the program-
mer has to make extensive use parallel memory access
features.

� Floating vs Fixed Point Architecture. Float-
ing point DSPs are increasingly becoming more popu-
lar. This is simply a result of their decreasing price.
Furthermore, some of the more recent DSP algorithms
require the higher precision and greater dynamic range
achievable only with a oating point architecture. Yet,
we also recognize that there always will be a demand for
�xed point DSPs, primarily at lower end of the DSP
spectrum where �xed point DSPs continue to domi-
nate the market. Therefore, we believe that students
who complete this DSP course must have a solid un-
derstanding of issues relevant to �xed point implemen-
tation of DSP operations.

� Hardware Architecture. There are a number of
issues that come up and/or learned from the real-time
implementation of DSP algorithms, such as pipelining,
parallel memory access, barrel shift operations, bit re-
versed addressing. An intimate knowledge of such ar-
chitectural features of current crop of DSPs provides
the student with an understanding of architectural fea-
tures important for eÆcient, real-time implementation
of DSP algorithms. As the design of dedicated DSP
integrated circuits is increasingly becoming more wide-
spread a solid understanding of the hardware architec-
tures is essential.

2.2. Course Outline

The course introduces the basic principles and tech-
niques of DSP, which are reinforced through design and
implementation of real-time algorithms.

Major Topics:

� Discrete time description of signals and sys-

tems: discrete-time sequences, basic DSP operations,
A/D, D/A conversion.

� Frequency domain analysis: sinusoidal steady-
state response of LTI systems, frequency response, sta-
bility, analog and digital frequencies.

� Z-transform and its applications in signal pro-

cessing: properties, transfer function, evaluation of
the inverse Z-transform, connection between the time
and the Z-domain, graphical concepts, e�ects of poles
and zeros on the frequency response, graphical design
of �lters.

� Discrete transforms: discrete Fourier series, �nite
duration sequences and the discrete Fourier transform
(DFT), the DFT approximation to the Fourier trans-
forms, properties, periodic and circular convolution,
FFT, decomposition in time and in frequency, varia-
tions on the basic algorithm, fast convolution.

�Digital �lter structures and design techniques:

Introduction to digital �lters, types of digital �lters:
FIR and IIR �lters, choosing between FIR and IIR
�lters, FIR and IIR �lter design techniques, system
implementation, �nite length register e�ects in �xed
point digital �lters, quantization, �lter structures free
of overow oscillations, scaling, roundo� noise, coeÆ-
cient sensitivity.

� Selected topics: Multirate signal processing, sam-
pling rate conversion, adaptive �ltering.

2.3. Laboratory

During the �rst half of the term students learn DSP
programming. They implement DSP algorithms which
are the basic building blocks frequently used in the de-
sign of more advanced DSP applications. In the second
half of the term students work on two projects which
emphasize the real-time signal processing.

Laboratory Set-up

In the laboratory students implement DSP algorithms
on the Motorola DSP Application Development System
(ADS). The ADS contains a 40-MHz Motorola 56002
�xed-point DSP processor, and a single channel A/D-
D/A subsystem that is capable of sampling signals up
to 50 kHz. Students access the ADS through control
software which interacts with the user and controls the
application development module. Each ADS is con-
nected to a host computer, a Sun SPARCstation, that
allows the student to run the assembler, linker, simu-
lator and the ADS control software. Through the host
computer students also access other related software

for simulation or digital �lter design (Matlab/DFP).
Each \DSP-station" is equipped with an oscilloscope,
a function generator and a spectrum analyzer. For au-
dio based experiments such as the speech scrambler-
descrambler project we also provide an audio source
(typically a CD player fed to the DSP-stations) and a
speaker to listen to the processed audio output.

Since 1995 we have also been using the Motorola DSP
evaluation modules (DSP56002-EVM). This EVM is a
low cost alternative to the Motorola ADS with nearly
identical functionality. Students �nd the modest in-
vestment (about Cdn. $120) to acquire such a sys-
tem worthwhile, as the EVM allows them to work on
projects outside of the laboratory. Furthermore, stu-
dents who continue working on DSP based 4th year
design projects frequently use the EVM as the basis
of their projects. This frees them up from the time-
consuming and error-prone process of designing and
building their own DSP boards. All major semicon-
ductor manufacturers market similar full-function, low-
cost evaluation modules based on their DSPs. These
kits typically include 2 channel A/D-D/A subsystems
and DSP code development software. Therefore, by us-
ing these inexpensive evaluation modules, it is possible
to set up a DSP laboratory based on any modern DSP
platform very economically.

In the �rst two experiments students design and im-
plement FIR and IIR �lters. A good understanding of
this elementary DSP operation is essential as digital
�lters constitute the backstay of all the subsequent ex-
periments and projects. While Matlab with the Signal
Processing Toolbox provides all the functions required
to design digital �lters, the subtleties of how to use
these functions escape many students as they do not
use them on a regular basis. To overcome this diÆ-
culty we developed the Digital Filter Package (DFP)
which provides a user friendly GUI front-end to digi-
tal �lter design with MATLAB. DFP extends the basic
digital �lter design functionality of MATLAB in two
important ways. Filter coeÆcients can be quantized.
This feature is of particular importance if the �lter will
eventually be implemented on a �xed point digital sig-
nal processor. DFP also generates assembler code for
the designed digital �lter. In the current DFP release
(Version 1.1) this option is available only for the Mo-
torola DSP56k family of �xed point processors.

Experiments and Projects

Experiments

� Basic Programming with the Motorola ADS.
� FIR Filtering.
� IIR Filtering and Speech Scrambler.

Projects

� Spectrum Analyzer.
� An Interactive Four Band Audio Equalizer.
� Digital VCO and PLL.
� DSB-AM modulation and demodulation.
� Multirate implementation of digital �lters.

In a typical o�ering of the course students complete
two projects. The �rst two projects (spectrum ana-
lyzer and equalizer) are both based on wideband signal
decomposition. Therefore, if the �rst project the stu-
dents work on is the spectrum analyzer, then the equal-
izer becomes the second project. This approach allows
the students to capitalize on the experience and under-
standing gained from the signal decomposition used in
the spectrum analyzer experiment. Figure 1 depicts the
block diagram of the spectrum analyzer. The \�lter-
bank" in Figure 1 is implemented using both an FFT
based signal decomposition and also a 5-stage, 32-band
regular tree decomposition. In the 32-band �lterbank
case students use multirate signal processing techniques
to achieve eÆciency in implementation.

In the interactive equalizer project (see Figure 2 for a
block diagram) we also introduce the student to inter-
active control of the DSP algorithm. Through a GUI
front end (Figure 3) running on the host computer stu-
dents can change the subband gains. This information
is then communicated from the serial port on the host
computer to the serial port of the DSP by generating
an interrupt. The interface routine is generic and al-
low students to incorporate other interactive control
elements into their design projects.

The digital VCO/PLL project together with the DSB-
AM project constitutes a \natural" pair as the PLL is
used in the coherent detection of the DSB-AM signal.
The main elements of the VCO-PLL projects include a
closed loop feedback system, sine-wave synthesis using
a table look-up method, phase shifting with circular
bu�er. These basic DSP subprojects familiarize the
student with the implementation techniques used in the
real-time realization of many DSP algorithms.

In recent years multirate signal processing have gained
importance. Therefore, it is essential that the students
completing a DSP course are well-versed with the anal-
ysis and real-time implementation of multirate systems.
While the implementation of decimation and interpola-
tion are most straight forward in a simulated environ-
ment such as Matlab, they present special challenges
if implemented in a real-time environment. The �l-
terbank project, and the multirate implementation of
digital �lters are substantial projects that expose the
students to this exciting area of DSP.

3. CONCLUSION

In this paper we presented our experience in design-
ing and o�ering a fourth year DSP course which em-
phasizes the teaching of analytic tools to analyze and
design DSP systems as well as the real-time implemen-
tation of such algorithms. One of the inherent advan-
tages of teaching such a DSP course is the ease with
which the rather abstract mathematical algorithms can
be brought to life through real-time implementation.

We recognize the development of ever more powerful
DSP design tools. These tools include block diagram
simulation (Simulink, SPW, Ptolemy), �xed-point arith-
metic analysis and automatic code generation for var-
ious target DSP architectures. An engineer working
in the DSP algorithm development will utilize these
advanced tools to achieve high productivity in his/her
work. We strongly believe that real-time implemen-
tation of DSP algorithms by low level programming a
DSP provides the student with an appreciation and in-
timate understanding of the subtleties of real-time pro-
gramming. Implementing DSP algorithms in a simula-
tion environment is also a rewarding experience mostly
because of the ease with which rather complicated con-
cepts can be visualized.

4. REFERENCES

The most recent version of the DFP is available for free
download from the Mathworks ftp site at

ftp://ftp.mathworks.com/pub/contrib/

and also from the department's WEB site

http://www.ee.ryerson.ca/ mzeytin/dfp/.

All course related material is available form the �rst
author's WEB site

http://www.ee.ryerson.ca/ mzeytin/ele792/.

I

L

T

E

R

B

F

A

K

N

2

2

2

2

D/A.
.
.

x (n)
1

2

K-1
x (n)

K
x (n)

E

E

E

E

x (n)

K

K-1

2

1

Oscilloscope

x(n)

()

()

()

()

Figure 1: K-band spectrum analyzer

0
H (z)

H (z)
1

x(n)

0
H (z)

H (z)
1

0
H (z)

H (z)
1

1

0

g
0 1

g

2

3

g g2 3

x’ (n)

x’ (n)

x’ (n)

x’ (n)

w(n)

Figure 2: Equalizer block diagram

Figure 3: Equalizer GUI for adjusting subband gains.

