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ABSTRACT

This paper presents a brief overview of various signal
procossing applications bascd on the fractional Fourier
Lransfrorpation and s relaled, recenlly-delined, phase
spaces.

1. INTRODUCTION

One of Lhe Orst praceical oplical approaches (o per-
forming correlation is the well koown Vander Lugt 4-
[ coherent configuration [1], ita analogous incohcrent
system [¥] or using the Joint transform correlator [3, 4].
Since the conventional correlation is a shift invariant
opcration, shifts of the input pattern provide a shifted
varrelation vutput plane with no effect on Lhe Gield dis-
tribution, and pixels located close to the center has
cxactly the same cffcet os pixels locoted at the outer
Ared.

In several pattern recognition applications the shift
invariance property within oll of the input plonc is not
necessary and even disturbys - An example s Lhe case
where the object is to be recognized only when its loca-
ticn is inside a certain area and rejected otherwiae, c.g.
o label which has been allixed m the wcorrecl place
during manufacturing Several approaches for obtain-
ing such space varianee detection have been suggeated.
The st approach s Che Tandemn comnponenl processor
that trades the shift invariance with high efficlency and
high peak to correlation- energy ratio [5]. Different ap-
proach s based on coded phase processor which multi-
plexed many filters and yat kept the apace handwidth
preduct {SW) of the ordinary single filter correlator
[6]. Recenily, a space-variant Fresnel transformn corre-
later [7], which is closely related o alensless intenaity
corrclator [8], woas suggested,

A similar approach is the tool coined fractional cor-
relation (FC) whose nptical implementation is done
using a sctup similar te the Yander Lugt correlator
(9, 10]. Qpposed Lo a solulion of using au approprake
input pupil which is open in the desired location, the
FC dars not require any additional equipment for ita
aplical nplementation, The BC sell selecls Lhe arca

of interest within the input scene. Additional example
for the necessity of the I'C 15 the case where the recog-
nition should mainly be based on the central pixels and
less on the outer pixels (for instance in systems whose
spalial resolution 13 improved 1n the central pixels, and
thus the central region of pixels s more reliable for the
recognilion process), An important application for the
FC might be the detection of localized objects using
a single cell detector, eliminating the need lor a CCD
array detector,

The F(}is a generalization of the conventional cor
relation operation and it is based on the fractional
Fourier trapsform (FRT) [11]. The FRT aperation is
uselul tor various spatial filtering and signal procesaing
applications [12, 13], that is defined through a trans-
formation kernel, as illustrated in Ref. {13]:

{FFu(z)}z) = f: By(z, e yu(2"}de" (1}

where Bp(F, ') is the kernel of the transfarmation and
r is the fractional order.
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This kernel has two oplical interpretations, one as a
propagation through GRIN medium [11] and the sse-
ond a& a rctation operation applied over the Wigner
plane [14]. DBoth definitions were shown to be fully
enuivalent in Ref. [15].

2. FRACTIONAL CORRELATION

The [ractional correlation {FC) uperation alluows Lo con-
trol the amount of shift variant property of the corre-
lation. This property iz based on the shift variance of
Lhe FRT and it is mwore significanl for the fraclional



orders of pas 0+ BN and less for pas 1+ 25 (N i3 any
integer).

It congists of obtaining the product of the fractional
transforma of the distribotions to be correlated, render-
ing a last FRT to obtain the final rerult. Analytically,
the operation of ¥ of an mput function, f(z], with a
reference pattern, gfz), is defined as follows:

Cpapapal ) = FP2{FP{fw}} FP2 {g(r)}} (3)

Where p1, 72, pa are the ordera of the FRTs to perform,
in principle arbitrary, Due to varioos reasons, delailed
in Ref. [9], the mnst abvious choice is:

nh=p Pz =-—p pz=—1 (4]

with p ranging from ( te 1. In this casc, if the in-
put coincides with the reference object, a perfect phase
tnatching between object and referenca FHI's in the
fractional domain is obtained. The inverse Fourier trans-
form will Just focus the resulting plane wave.

In order to build eptically & FC, instead of prepar
ing a full setup containing two lenscs and free propaga-
tions, the object is illuminated with a converging beam
[18].

This permits the change of the convergenve pliase
factor, multiplying the nbject, by displacing it along
the cptical axis. Thea matching between the distance
object-filter and the convergence of the beam may pro-
duce any dezired order and sealing factor. Hence, this
approach 158 more convenient for the experimenter, as
the exact sizes of the input and filter transparencies
are often not precisely determined. This is eaperially
imporianl for the case of using SLMa for implement
mg the filter. As the FRT is not exact there will be
a quadratic phase factor multiplying the autput plane.
It means that the correlation plane will be displaced
along the optical axis.

3. APPLICATIONS

Hesides the ability to change casily the space variance
of the vplical system, e PRT has shown to be very
useful for many other applications in signal processing.
The main application is relatcd to chirp noisc removal.
This application s based on the [acl that if a chirp
type hoise of exp(—iar?) is fractionally Fourier trans-
formed with the order of p = Ztan™' (1) the result is
essenlially o delta funclion. Thus, (g order 1o remove
the noige a simple notch filter may be placed in the
proper FRT plane, wsing the froctional correlator con-
figuralion. Jince Lhe Qlier 15 notch, the amount of the
signal's information lost, is minimal. Another impor-
tant applicaticn of the FRT 12 relaied to the fact that

the FRT cornempouds Lo rolation of the Wigner chart
hy an angle of pT. Thus, assuming that the Wigner
chart for the signal and the noise distributions is as
illustrated by Fig. 1, oue may see that filtering ei-
ther in the Fourier plane (corresponds to projection of
the Wigner chart over the fr axis} or filtering in the
spatial plane {corresponds to projection of Lhe Wigner
chart over the » axig) will result in partial loge of the
signal's information. However, filtering in the proper
FRT plane (the angle in the Wigner chart at which full
separatiom exists between the projections of the signal
and the noise) may result in full reconstruction of the
signal cut of its noise [17).

Figurc 1: A Wigner chart of a signal and a noise where
the FRT filtering is very applicable.

Another important application of the FRT is re-
tuted Lo signal multiplexing, Due to the ahility of the
FRT to rotate the Wigner chart, the Wigner distribu-
tion of o signal may be arranged in a more efficient
wanuer {13] as seen in Fig. 2. That efficient arrange-
ment saves additional bandwidth that may be neaded
for the transmission of the signal. Note that Tig. 2 is
hased on the fact that shifting a signal in space, shifts
ites Wigner chart in the spatial axis. Multiplying the
signal by a lincar phasc factor shifts its Wigner chart
in the frequency axis accordingly to the linear phase,

4. THE ADAPTIVE FRACTIONAL
FROCESSOR

The FC dizscusszed so far was based en the FRT with
an uniform fractional order applied over the reference
and the input functions. In this section we introduce
an adaptive FRT (AFRT), i.e an FRT whnse fractional
order is space dependent and thue the amount of shuft
variance/Invariance is also spatially controlled. Such
a transformatinn may he implemented optically in Pt
conhgurations achieving both: shift variant noise re-
reval (for non stationary noises whose statistical prop-



Q
4N
<
»Y

Figure 2. A Wigner chiort of a signal which may be
mare efficiently multiplexed via an FRT.

erbies are varied wilh the spatial position) and jpage
deteckion (for many datection applications which could
bhe implemented with better efficiency by using a shift
variant or partially shift varianl processurs).

The most common case where diferent spatial shitt
variant processing is required, relates (o finger print
recognition [18]. The finger print is a pattern whose
spatial variance is changed with the spalial location,
Ita contral rogion 13 more or leas comstant while the
outer one is changed from instant to instant since one
never presses hig finger in equal [orce. 'L'hus, in order to
rccognize or reconstruct those prints, a processor whose
spadial shill variance is changed, is required. Due to the
physical construction of the filter, in the center a small
shift invariance i3 nceded, but in the outer regions of
the prinl increasing shift invariance is required. In this
practical case an AFRT processor should ke helpful,
ginee on cfficient recognition of the finger printas can
be very apphcable, for instance, in safety lockers or in
entrance to permission reatricted entrance zones,

5. THE (X, M) CHARL

Recently in the digital provessing and Lhe compulerised
tomngraphy field, a new time-frequency analyzing tool,
the Radon Wigner transform, was suggested [10, 20]
and uvsed for time frequency-representation of digital
signals [21, 22]. This appraach led ta a chart that
cohtaing a continucus representation of the FRT of a
signal as a function of the FRT order [23]. Concerning
ug, this representation may ha nseful also in optics since
it ehows explicitly the propagation of a signal inside a
graded index medium, The given approach [or produc-
ing this display starts with a 1-T inpot signal while
the cutput signal conlains 2 I, The optical setup for
obtaining the FRT was adapted o nclude ooly fixed
free apace propagation distances and variable lenses
With a set of two multi facet compoeite holograms, the
Radon-Wigner display has been experimnentally demon-
strated.

5.1. Mathematical Definition

A display that contains a continuous represeotation of
an FRT of a signal as a fimetion of the FRT order
i coined by us the {x,p) display, and may be vacful
both for digital signal processing (see Ref [21]) and for
optics. For a 1-T2 ahject, this plaot containg twn axes:
the vertical is the space coordinate # and the honizontal
is the PIXT order p. The 1-D light distribution wy(x)
{a p order FRT of the nriginal signal up(a)) is plared
ag a gtrip in the proper horizontal location in the chart
according to its fractional order p. More explicitly vne



it wribe

F(z,p) = () (%)
As a resull, all of the FRT orders of the orginal fune-
tion up{a) are saleulated and displayed in one plot.

3.2, Simple Examples

IFig. & illusirates the (x,p) charts of & two simple sig-
nals. In Fig. 3a the illustrated signal 18 wy (2] = &2 —
ol e+xg) and in 3b the signal is wa(2) = recl {é‘__'—_uj

Figure 3: An example of the (x, p) display. a). wiz) =
#lr = o)+ dlx + xp) b). usl(z) = reet {ﬁ}

One may see, in both figures, how the expecied
Foaurier transform is obtained in (#,p = 1) (for wy a

cosine and lor wy a sine lunetion),

6. THE (R, ) CHART

The next step after defining the (i, ¢} charl is whal we
call an {r p) chart. This chart performs a Cartesian
te polar coordinate transform of the (& p) chart [24].
Here, all of the FRET orders of the function are drawn
as angular vectors. Each FRT arder is drawn along the
# axis in specific angular orientation of ¢ = pl where
p 15 the fractional order. Implicitly, one can write the
[ p] representalion as

Frop) = ug(r] (6)

Fig. 4 gives o graphical lustration ol the (v, p) chart
representatinn
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Figure 4: Illustration of the (r, p) chart.

It 1z important to note that despite r being a radial
caprdinate it may get negative values. The v ronrdi-
nate negative values are a by product of the (v, p) chart
definition. owever, speaking about negative values for
r has no conflict with the polar coordinate definition
since

ttpaalr) = up{—1) {7

Another note 15 connected with » = (1, This singu-
lar point contains no relevant information and should
be avoided while using the chart. As a polar represen-
tation, the required spatial resolution for lower » value
is higher. Thus, practically, a certain area of |r| < ry
is not able to carry the necessary information (due 1o
the limited spatial resclution ol every plot) and must
be avolded too.

The (r,p} chart is our candidate for serving as a
phase space representation, I contains full informa-
tion aboul the object (aleng ¢ = 0) and about s spec-
trum {along ¢ = $). Additional information regarding
the mixture space-frequency information 15 given along
other values of ¢, The inverse transformation is trivial

us(rl = Fir p) (&)
and for the abject itself

uglr) = Fr ) (97

7. THE USAGE OF THE (X, P) AND THE
(f, P CHARTS FOIL SIGNAL PROCESSING

In this seetion we will illustrate the usage of the {z, p)
and the (v, p] charts for identification ol avoustic sig-
nals.

The Wavelat transform is a very commen tool for
speech identification [23, 26], However, in order to ob-



tain high discrimination between similar acoustic sig-
nals, proper algorithms for choosing the aptimal de-
composition base are to be applied. An improved dis-
crimination may also be obtained by wsing the (x, p)
ar the (v, p) displays. Tn arder to perform the identi-
fication the (z,p) or the (r, p) charts of the reference
pattern are computed and stored in the computer mem-
ary. The input sonnds sequence is divided into patterns
having similar lengths and their (2, p) or (v, p) charte
are calonlated. A 2-T3 correlation 15 performed between
the (@, p) ar {7, p) charta af the reference and the input
sound patterns:

B po

Gﬂj‘*[I’p} = / f Gﬂp[:ﬂ',pl‘j
Fe (:r:I — 1, — plda’dp’

Crplz,y) = f f Greple’ y') -

rp[: —a,y —yde'dy’ (10)

where (7., and Fp; are the input and the reference
(@, p) charte, respectively, Grple, y) and Frplx, p) are
the input and the reference (r, p) charts, respectively,
where the correlation is perfrrmed in Cartesian cone-
dinates get ¢ and .

Apparently, such an algorithm obiains supreme dis-
crimination ahility resulted in the additional dimension
af the {x, p) or the (r, p) charts. Fig. & illustrates the
provessing abilities of the {ir, p) charl oo an acoustic
signal  The input aconstic signal is shown in Fig. ba.
The acoustic pattern was sampled in a eampling rate of
G192 Mz, A pattern of 128 pixels (15.63 [msec]) taken
from the middle of the input signal, was chosen to be
the reference signal. Fig. 5b presents the (2, p) chart
of the reference signal, Flg, be presents the cross see-
tinm of the ahtained correlation as function of time. For
comparison, a cross section of the correlalion between
the reference signal and a similar acoustic signal (seen
in Fig. Ad), is presented in Fig. e, Ome may ses that
much lower correlation values are obtained.
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