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ABSTRACT

The structure and the properties of the eigenfunctions of
thecanonical integra transform areinvestigated. It isshown
that a signal can be decomposed into a set of the orthogo-
nal el genfunctionsof thegeneralized Fresnel transform. The
property that the set contains a finite number of functionsis
obtained.

The canonical integral transform, also known asthegen-
eralized Fresnel transform (GFT) [1, 2], including as a par-
ticular case the fractional Fourier transform, isnow actively
used in optics, quantumtheory, signa and image processing,
etc. The GFT of asignd f(«x) isgiven by
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with the determinant equa to 1.

The GFT parametrized by the matrix A = D = cos«
and B = —C' = sina corresponds, except for a factor
exp(ia/2), tothefractional Fourier transform (FT) [3]. The
eigenfunctionsof thefractional Fourier transform have been
investigated in Refs. [4, 5, 6, 7].

In this paper we consider the structure and the proper-
tiesof theeigenfunctionsfor the GFTs and proposeamethod
for their generation. We show that any signal can be decom-
posed into a set of orthogona eigenfunctions of the GFT.
This set contains a finite number of functions % if

arccos((A + D)/2) = 2rmm/k,
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where k and m are integers.
A signa f(x) isan eigenfunction fas () of the canoni-
cal operator RM (aso-called sdf-GFT function) if

RM [far (2)] (u) = afar (u), (4)

wherea = exp(i27y) isacomplex constant factor [1]. Asit
followsfrom Parseva’s relation for the canonical transform
of asigna with finiteenergy [ |f(z)|” dz < oc: |a| = 1
and therefore ¢ isred. Note that for infinite signals ¢ can
be complex.

It has been shown in Ref. [1] that the functions
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are eigenmodes for the GFT operator R with eigenvalue
a = exp(—i(n+1/2)6), where H,, (u) aretheHermitepoly-
nomials, and where the parameters 4, A, and 3 are defined
from the parameters of the transfer matrix as

¢ = arccos((A+ D)/2)
A2 = 2B(4—(A+ D))" ? 6)
8 = (A-Dy(a-(A+D?) 7

with |[A+ D| # 2 and B, C' # 0. One can aso write the
expressions for the parameters of the transfer matrix as

A = cosf+ Fsind
B = Msinf 7
C = —(F+1HA %sind (7)
D = cosf— 3sinb.

The application of the relationships (5) and (7) for the con-
struction of the eigenfunctions in limiting cases like the
Fresnd transform (A> — oo and § — 0) and the scaling
transform (A\* — 0 and 3% + 1 — 0) is problematic. We
therefore confine ourselves to the GFT parametrized by a
matrix for which |[A+ D| # 2 and B,C # 0. Note that
B isequal to 0 only for thecase A = D = cosé. Then we
have B = A\?sin¢ and C' = —sin 0/A?, which represents
the scaled fractional Fourier transform for real 6.



It iswell known that the GFT operator R produces a
linear transformation of theWigner distribution W (x, w) of
thesigna f(x) in the phase space:

Weapp(z,w) = Wy (Dx — Bw, Aw — Cz).

Then the Wigner distribution of a self-GFT functionisin-
variant under an affine transformation:

Wiy (2,w) = Wi, (Dz — Bw, Aw — Cz).

It follows from the cascading property for the GFT:
RMz My — RMs \where M3 = M, x My, and Eq. (4), that
the eigenfunction fa () for the canonical integral operator
RM with eigenvalue a, is also an eigenfunction with eigen-
value a' for the GFT parametrized by the matrix M!, where
lisaninteger. Then thefunction ®,,(«) defined by Eq. (5) is
also an eigenfunction for the GFT parametrized by the ma-
trix M!, whose parameters can be written as

AD = coslf + Bsinll
BWO = Xginlf 8
C = (B2 + 1)\ ?sinld ®
DO = cosl — Bsinld.

From thelinearity of the GFT and from the definition (4)
it followsthat a sum of eigenfunctionsfor a given GFT op-
erator RM withidentical eigenvaluesa isalso an eigenfunc-
tion for RM with the same eigenvalue «. Then a self-GFT
function with eigenvalue a = exp(—i2mp) can be repre-
sented as a superposition of certain modes ®,, () with the
indices {n} satisfying the relationship

2r(N 4+ ) = —(n+1/2)0, (9)

where ¢ is a constant defining the eigenvalue of thiseigen-
function and V isan integer. Let n, and n» be solutions of
this equation. Then we obtain that

27T(N1 — Nz) = —(77,1 — 77,2)9

It is easy to see from this relationship that for a matrix
for which the parameters A and D are such that 6/2r =
arccos ((A + D)/2) /2w iscomplex or irrational, n; = ns
istheonly solutionof Eq. (9). Thereforethefunctions®,, (x)
are the only solutions of Eq. (4).

It followsfrom Eq. (6) that if |A + D| > 2, the parame-
ters@, A2, and 3 become complex:

0 = mk+i(—1)*arccosh ((A+ D)/2)
A = —i2Bl4—(A+ D)2V
B = —i(A-D)|a—(A+ D)%

As an example let us consider the eigenfunctions for the
GFT parametrized by the matrix

cosh o
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withrea « and 7. Since A = D, it followsfrom Eq. (7) that
B =0and B = —*C,whichyidds\? = ip? and 6 =
i, The set of orthonormal eilgenmodes (5) with eigenvalues
a = exp((n + 1/2)«) for this system can now be written as

(\/EQ" exp(iﬂ'/4)n!) —i/2

ix? . x
X eXp (W) H, (exp(—m’/él);) .(13)
Thus the chirp function

@n(l‘) =

;2
Dy (z) = (ﬁexp(iﬂ'/4)) —i/2 exp (%)

is self-reproducible under the GFT parametrized by the ma-

trix (10). Note that the eigenvalues of the different modes

®,(x) and ®,, (z) for the same angle « are different. This

means that a superposition of these modes is not an eigen-

function of the corresponding GFT.

For the case |[A+ D| < 2, the parameters 6, \?,
and § are rea. Moreover we can dways take A2 >
0 in Eqg. (6) by choosing the appropriate sign of ¢ =
+arccos ((A + D)/2).

If the parameters of the transfer matrix are such that
0/2n = + arccos ((A + D)/2) /2risrationd,f = 2rm/k
where k and m arerelatively primeintegersand m < k, then
there are several sets of indices {n} which satisfy Eq. (9).
Since the eigenfunction for the GFT parametrized by a ma-
trix M for which & = 2xm/k, is dso an eigenfunction
for the cascade of such GFTs with parameters defined by
Eqg. (8), itismoreeasy to construct the eigenfunction related
withthematrix M' suchthat 6 = 27ml/k = 27N +27/k,
where N is an integer. Using the periodicity property of
trigonometric functionswe obtain that the eigenfunction for
the GFT parametrized by amatrix M with§ = 27m/k, is
the eigenfunction for the GFT related to the matrix M /™
withé = 2x/k. It is easy to see that for § = 2x/k we
have & different sets of modes for which relation (9) holds:
n = L + ki, where L is an integer constant from [0, k[
and! isaninteger. Then aself-GFT functionwith eigenvalue
a = exp(—i2w(L +1/2)/k) isdefined as

FE(u) = ZgL+kl<I)L+kl(U), (12)
=0

where g1+, are complex constants. This function is also
an eigenfunction with eigenvalue « = exp(—i2a(L +
1/2)m/k) for the GFT parametrized by the matrix M ™ for
any integer m.

If k iseven, then asit followsfrom Egs. (12) and (5), the
sdf-GFT functionisevenforeven L: f£ (—u) = f£(u),and
odd for odd L: f£(—u) = —fE(u).

It is easy to see that if far(z) is an egenfunction for
the operator R with eigenvalue a, then its complex con-

jugate f;, (z) isalso an eigenfunction for R, where 4 =



D,D = A,and B = B, with the same eigenvalue a. In-
deed if |[A 4+ D| < 2, then the complex conjugate of the
eigenmode @} (x) can be derived from @, () by changing
in Eq. (5) 8 to — 3, which corresponds, in accordance with
Eqg. (6), to thematrix M . For the case of thefractiona FT or
scaled fractional FT (3 = 0) we obtain that if f,(z) isan
eigenfunction for thefractional FT operator R* with eigen-
value a then its complex conjugate f%(x) isaso an eigen-
functionfor the same operator R* with the same eigenval ue.

Aswell asin the case of the self-fractiona Fourier func-
tions, the self-GFT functionsfor the same operator with dif-
ferent elgenvalues (i.e., different indices 1.) are orthogona
to each other, because they are expanded into digjoint series
of the orthogonal functions @, .

Duetothefact that thefunctions®,, formacomplete or-
thogonal set, any function g(«) can be represented as their

superposition
=3 gn®n(u). (13)
n=0

Subdividing the seriesinto partial ones

k-1 00
g(u) = Z (Z IL+kiPLysi(u ) Z fE(u) (14)

L=0 \I=0
we have that afunction ¢(«) can be represented as a linear
superposition of & orthogonal self-GFT functions f£ (u) of
agiven operator RM ,where = 2 /k. For k = 2 weobtain
thefunction decompositionintotheeven and odd parts. Note
that there are a number of operators described by the same
@, which differ from each other by the parameters A and 5.
On the other hand a self-GFT function for the operator
RM parametrized by amatrix M suchthat = 27wm/k, can
be constructed from any generator function ¢ () throughthe
following procedure

k-1

) =03 exp (%) R [g(w) (u),

p=0
(15)
where C' is an arbitrary complex constant. This can be
proved by using Egs. (13) and (15). Indeed,
p=0
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Then choosing the constant C' in Eq. (15) according to
C = k= exp (i27(L + 1/2)), weobtainthat thisprocedure
repeated for L = 0, ..., k — 1 correspondsto the signal de-
composition into a set of £ orthogonal self-GFT functions
[E (u) of agiven operator RM , where § = 27 /k.

We finally note that the signal decomposition on the fi-
nite set of the orthogonal GFT-functions for given R can
be useful for signal analysis, filtering and securing informa-
tion.
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