PROPERTIES OF EIGENFUNCTIONS OF THE CANONICAL INTEGRAL TRANSFORM

T. Alieva and M.J. Bastiaans

Technische Universiteit Eindhoven Faculteit Elektrotechniek Postbus 513, 5600 MB Eindhoven, Netherlands email: t.i.alieva@ele.tue.nl, m.j.bastiaans@ele.tue.nl

ABSTRACT

The structure and the properties of the eigenfunctions of the canonical integral transform are investigated. It is shown that a signal can be decomposed into a set of the orthogonal eigenfunctions of the generalized Fresnel transform. The property that the set contains a finite number of functions is obtained.

The canonical integral transform, also known as the generalized Fresnel transform (GFT) [1, 2], including as a particular case the fractional Fourier transform, is now actively used in optics, quantum theory, signal and image processing, etc. The GFT of a signal f(x) is given by

$$F_M(u) = R^M[f(x)](u) = \int_{-\infty}^{\infty} f(x) K_M(x, u) dx, \quad (1)$$

with the kernel

$$K_M(x,u) = \begin{cases} \frac{1}{\sqrt{iB}} \exp\left(i\pi \frac{Ax^2 + Du^2 - 2xu}{B}\right), B \neq 0\\ \frac{1}{\sqrt{A}} \exp\left(i\pi \frac{Cu^2}{A}\right) \delta\left(u - x/A\right), B = 0 \end{cases}$$
(2)

parametrized by a real 2×2 matrix

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \tag{3}$$

with the determinant equal to 1.

The GFT parametrized by the matrix $A = D = \cos \alpha$ and $B = -C = \sin \alpha$ corresponds, except for a factor $\exp(i\alpha/2)$, to the fractional Fourier transform (FT) [3]. The eigenfunctions of the fractional Fourier transform have been investigated in Refs. [4, 5, 6, 7].

In this paper we consider the structure and the properties of the eigenfunctions for the GFTs and propose a method for their generation. We show that any signal can be decomposed into a set of orthogonal eigenfunctions of the GFT. This set contains a finite number of functions k if

$$\arccos((A+D)/2) = 2\pi m/k$$

where k and m are integers.

A signal f(x) is an eigenfunction $f_M(x)$ of the canonical operator \mathbb{R}^M (a so-called self-GFT function) if

$$R^{M}\left[f_{M}(x)\right](u) = af_{M}(u), \qquad (4)$$

where $a = \exp(i2\pi\varphi)$ is a complex constant factor [1]. As it follows from Parseval's relation for the canonical transform of a signal with finite energy $\int |f(x)|^2 dx < \infty$: |a| = 1and therefore φ is real. Note that for infinite signals φ can be complex.

It has been shown in Ref. [1] that the functions

$$\Phi_n(x) = \left(\sqrt{\pi}2^n \lambda n!\right)^{-1/2} \exp\left(-\frac{(1+i\beta)}{2\lambda^2}x^2\right) H_n(x/\lambda)$$
(5)

are eigenmodes for the GFT operator R^M with eigenvalue $a = \exp(-i(n+1/2)\theta)$, where $H_n(u)$ are the Hermite polynomials, and where the parameters θ , λ , and β are defined from the parameters of the transfer matrix as

$$\theta = \arccos \left((A+D)/2 \right) \lambda^2 = 2B \left(4 - (A+D)^2 \right)^{-1/2} \beta = (A-D) \left(4 - (A+D)^2 \right)^{-1/2},$$
(6)

with $|A + D| \neq 2$ and $B, C \neq 0$. One can also write the expressions for the parameters of the transfer matrix as

$$A = \cos \theta + \beta \sin \theta$$

$$B = \lambda^2 \sin \theta$$

$$C = -(\beta^2 + 1)\lambda^{-2} \sin \theta$$

$$D = \cos \theta - \beta \sin \theta.$$
(7)

The application of the relationships (5) and (7) for the construction of the eigenfunctions in limiting cases like the Fresnel transform $(\lambda^2 \to \infty \text{ and } \theta \to 0)$ and the scaling transform $(\lambda^4 \to 0 \text{ and } \beta^2 + 1 \to 0)$ is problematic. We therefore confine ourselves to the GFT parametrized by a matrix for which $|A + D| \neq 2$ and $B, C \neq 0$. Note that β is equal to 0 only for the case $A = D = \cos \theta$. Then we have $B = \lambda^2 \sin \theta$ and $C = -\sin \theta / \lambda^2$, which represents the scaled fractional Fourier transform for real θ . It is well known that the GFT operator R^M produces a linear transformation of the Wigner distribution $W_f(x, \omega)$ of the signal f(x) in the phase space:

$$W_{R^{M}[f]}(x,\omega) = W_{f}(Dx - B\omega, A\omega - Cx).$$

Then the Wigner distribution of a self-GFT function is invariant under an affine transformation:

$$W_{f_M}(x,\omega) = W_{f_M}(Dx - B\omega, A\omega - Cx).$$

It follows from the cascading property for the GFT: $R^{M_2}R^{M_1} = R^{M_3}$, where $M_3 = M_2 \times M_1$, and Eq. (4), that the eigenfunction $f_M(x)$ for the canonical integral operator R^M with eigenvalue a, is also an eigenfunction with eigenvalue a^l for the GFT parametrized by the matrix M^l , where l is an integer. Then the function $\Phi_n(x)$ defined by Eq. (5) is also an eigenfunction for the GFT parametrized by the matrix M^l , whose parameters can be written as

$$A^{(l)} = \cos l\theta + \beta \sin l\theta$$

$$B^{(l)} = \lambda^2 \sin l\theta$$

$$C^{(l)} = -(\beta^2 + 1)\lambda^{-2} \sin l\theta$$

$$D^{(l)} = \cos l\theta - \beta \sin l\theta.$$
(8)

From the linearity of the GFT and from the definition (4) it follows that a sum of eigenfunctions for a given GFT operator R^M with identical eigenvalues a is also an eigenfunction for R^M with the same eigenvalue a. Then a self-GFT function with eigenvalue $a = \exp(-i2\pi\varphi)$ can be represented as a superposition of certain modes $\Phi_n(x)$ with the indices $\{n\}$ satisfying the relationship

$$2\pi(N+\varphi) = -(n+1/2)\theta, \qquad (9)$$

where φ is a constant defining the eigenvalue of this eigenfunction and N is an integer. Let n_1 and n_2 be solutions of this equation. Then we obtain that

$$2\pi(N_1 - N_2) = -(n_1 - n_2)\theta.$$

It is easy to see from this relationship that for a matrix for which the parameters A and D are such that $\theta/2\pi = \arccos((A + D)/2)/2\pi$ is complex or irrational, $n_1 = n_2$ is the only solution of Eq. (9). Therefore the functions $\Phi_n(x)$ are the only solutions of Eq. (4).

It follows from Eq. (6) that if |A + D| > 2, the parameters θ , λ^2 , and β become complex:

$$\theta = \pi k + i(-1)^k \operatorname{arccosh} \left((A+D)/2 \right) \lambda^2 = -i2B \left| 4 - (A+D)^2 \right|^{-1/2} \beta = -i(A-D) \left| 4 - (A+D)^2 \right|^{-1/2}.$$

As an example let us consider the eigenfunctions for the GFT parametrized by the matrix

$$M = \begin{pmatrix} \cosh \alpha & \eta^2 \sinh \alpha \\ \sinh \alpha / \eta^2 & \cosh \alpha \end{pmatrix}$$
(10)

with real α and η . Since A = D, it follows from Eq. (7) that $\beta = 0$ and $B = -\eta^4 C$, which yields $\lambda^2 = i\eta^2$ and $\theta = i\alpha$. The set of orthonormal eigenmodes (5) with eigenvalues $a = \exp((n + 1/2)\alpha)$ for this system can now be written as

$$\Phi_n(x) = \left(\sqrt{\pi}2^n \exp(i\pi/4)n!\right)^{-1/2} \\ \times \exp\left(\frac{ix^2}{2\eta^2}\right) H_n\left(\exp(-i\pi/4)\frac{x}{\eta}\right).$$
(11)

Thus the chirp function

$$\Phi_0(x) = \left(\sqrt{\pi} \exp(i\pi/4)\right)^{-1/2} \exp\left(\frac{ix^2}{2\eta^2}\right)$$

is self-reproducible under the GFT parametrized by the matrix (10). Note that the eigenvalues of the different modes $\Phi_n(x)$ and $\Phi_m(x)$ for the same angle α are different. This means that a superposition of these modes is not an eigenfunction of the corresponding GFT.

For the case |A + D| < 2, the parameters θ, λ^2 , and β are real. Moreover we can always take $\lambda^2 > 0$ in Eq. (6) by choosing the appropriate sign of $\theta = \pm \arccos ((A + D)/2)$.

If the parameters of the transfer matrix are such that $\theta/2\pi = \pm \arccos\left((A+D)/2\right)/2\pi$ is rational, $\theta = 2\pi m/k$ where k and m are relatively prime integers and m < k, then there are several sets of indices $\{n\}$ which satisfy Eq. (9). Since the eigenfunction for the GFT parametrized by a matrix M for which $\theta = 2\pi m/k$, is also an eigenfunction for the cascade of such GFTs with parameters defined by Eq. (8), it is more easy to construct the eigenfunction related with the matrix M^l such that $\theta l = 2\pi m l/k = 2\pi N + 2\pi/k$, where N is an integer. Using the periodicity property of trigonometric functions we obtain that the eigenfunction for the GFT parametrized by a matrix M with $\theta = 2\pi m/k$, is the eigenfunction for the GFT related to the matrix $M^{1/m}$ with $\theta = 2\pi/k$. It is easy to see that for $\theta = 2\pi/k$ we have k different sets of modes for which relation (9) holds: n = L + kl, where L is an integer constant from [0, k]and l is an integer. Then a self-GFT function with eigenvalue $a = \exp(-i2\pi(L+1/2)/k)$ is defined as

$$f_k^L(u) = \sum_{l=0}^{\infty} g_{L+kl} \Phi_{L+kl}(u),$$
 (12)

where g_{L+kl} are complex constants. This function is also an eigenfunction with eigenvalue $a = \exp(-i2\pi(L + 1/2)m/k)$ for the GFT parametrized by the matrix M^m for any integer m.

If k is even, then as it follows from Eqs. (12) and (5), the self-GFT function is even for even $L: f_k^L(-u) = f_k^L(u)$, and odd for odd $L: f_k^L(-u) = -f_k^L(u)$.

It is easy to see that if $f_M(x)$ is an eigenfunction for the operator R^M with eigenvalue a, then its complex conjugate $f_M^*(x)$ is also an eigenfunction for $R^{\widetilde{M}}$, where $\widetilde{A} =$ $D, \widetilde{D} = A$, and $\widetilde{B} = B$, with the same eigenvalue a. Indeed if |A + D| < 2, then the complex conjugate of the eigenmode $\Phi_n^*(x)$ can be derived from $\Phi_n(x)$ by changing in Eq. (5) β to $-\beta$, which corresponds, in accordance with Eq. (6), to the matrix \widetilde{M} . For the case of the fractional FT or scaled fractional FT ($\beta = 0$) we obtain that if $f_{\alpha}(x)$ is an eigenfunction for the fractional FT operator R^{α} with eigenvalue a then its complex conjugate $f_{\alpha}^*(x)$ is also an eigenfunction for the same operator R^{α} with the same eigenvalue.

As well as in the case of the self-fractional Fourier functions, the self-GFT functions for the same operator with different eigenvalues (i.e., different indices L) are orthogonal to each other, because they are expanded into disjoint series of the orthogonal functions Φ_n .

Due to the fact that the functions Φ_n form a complete orthogonal set, any function g(u) can be represented as their superposition

$$g(u) = \sum_{n=0}^{\infty} g_n \Phi_n(u).$$
(13)

Subdividing the series into partial ones

$$g(u) = \sum_{L=0}^{k-1} \left(\sum_{l=0}^{\infty} g_{L+kl} \Phi_{L+kl}(u) \right) = \sum_{L=0}^{k-1} f_k^L(u) \quad (14)$$

we have that a function g(u) can be represented as a linear superposition of k orthogonal self-GFT functions $f_k^L(u)$ of a given operator R^M , where $\theta = 2\pi/k$. For k = 2 we obtain the function decomposition into the even and odd parts. Note that there are a number of operators described by the same θ , which differ from each other by the parameters λ and β .

On the other hand a self-GFT function for the operator R^M parametrized by a matrix M such that $\theta = 2\pi m/k$, can be constructed from any generator function g(x) through the following procedure

$$f_k^L(u) = C \sum_{p=0}^{k-1} \exp\left(\frac{i2\pi(L+\frac{1}{2})p}{k}\right) R^{M^l}[g(x)](u),$$
(15)

where C is an arbitrary complex constant. This can be proved by using Eqs. (13) and (15). Indeed,

$$\sum_{p=0}^{k-1} \exp\left(\frac{i2\pi(L+\frac{1}{2})p}{k}\right) R^{M^{l}} \left[\sum_{n=0}^{\infty} g_{n}\Phi_{n}(u)\right](x)$$

$$= \sum_{n=0}^{\infty} \sum_{p=0}^{k-1} \exp\left(\frac{i2\pi((L-n)p-(n+1/2))}{k}\right) g_{n}\Phi_{n}(x)$$

$$= k \sum_{n=0}^{\infty} \delta_{n,L+kl} \exp\left(-\frac{i2\pi(n+1/2)}{k}\right) g_{n}\Phi_{n}(x)$$

$$= k \exp\left(-i2\pi(L+1/2)\right) \sum_{l=0}^{\infty} g_{L+kl}\Phi_{L+kl}(x).$$

Then choosing the constant C in Eq. (15) according to $C = k^{-1} \exp(i2\pi(L+1/2))$, we obtain that this procedure repeated for L = 0, ..., k - 1 corresponds to the signal decomposition into a set of k orthogonal self-GFT functions $f_k^L(u)$ of a given operator R^M , where $\theta = 2\pi/k$.

We finally note that the signal decomposition on the finite set of the orthogonal GFT-functions for given R^M can be useful for signal analysis, filtering and securing information.

REFERENCES

- D. F. V. James and G. S. Agarwal, "The generalized Fresnel transform and its application to optics," Opt. Commun. 126 (1996) 207–212.
- [2] M. Nazarathy and J. Shamir, "First-order optics a canonical operator representation: lossless systems," J. Opt. Soc. Am. A 72 (1982) 356–364.
- [3] V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," J. Inst. Math. Appl. 25 (1980) 241–265.
- [4] D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, "Self-Fourier functions and fractional Fourier transforms," Opt. Commun. **105** (1994) 36–38.
- [5] T. Alieva, "On the self-fractional Fourier functions," J. Phys. A 29 (1996) L377–L379.
- [6] T. Alieva and A. Barbé, "Self-fractional Fourier functions and selection of modes," J. Phys. A 30 (1997) L211–L215.
- [7] T. Alieva and A. Barbé, "Self-imaging in fractional Fourier transform systems," Opt. Commun. 152 (1998) 11–15.