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ABSTRACT

The structure and the properties of the eigenfunctions of
the canonical integral transform are investigated. It is shown
that a signal can be decomposed into a set of the orthogo-
nal eigenfunctions of the generalized Fresnel transform. The
property that the set contains a finite number of functions is
obtained.

The canonical integral transform, also known as the gen-
eralized Fresnel transform (GFT) [1, 2], including as a par-
ticular case the fractional Fourier transform, is now actively
used in optics, quantum theory, signal and image processing,
etc. The GFT of a signal f(x) is given by

FM (u) = RM [f(x)] (u) =
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parametrized by a real 2� 2 matrix

M =
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A B
C D

�
(3)

with the determinant equal to 1.
The GFT parametrized by the matrix A = D = cos�

and B = �C = sin� corresponds, except for a factor
exp(i�=2), to the fractional Fourier transform (FT) [3]. The
eigenfunctions of the fractional Fourier transform have been
investigated in Refs. [4, 5, 6, 7].

In this paper we consider the structure and the proper-
ties of the eigenfunctions for the GFTs and propose a method
for their generation. We show that any signal can be decom-
posed into a set of orthogonal eigenfunctions of the GFT.
This set contains a finite number of functions k if

arccos((A +D)=2) = 2�m=k;

where k and m are integers.
A signal f(x) is an eigenfunction fM (x) of the canoni-

cal operator RM (a so-called self-GFT function) if

RM [fM (x)] (u) = afM (u); (4)

where a = exp(i2�') is a complex constant factor [1]. As it
follows from Parseval’s relation for the canonical transform
of a signal with finite energy

R jf(x)j2 dx < 1: jaj = 1
and therefore ' is real. Note that for infinite signals ' can
be complex.

It has been shown in Ref. [1] that the functions
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(5)
are eigenmodes for the GFT operator RM with eigenvalue
a = exp(�i(n+1=2)�), whereHn(u) are the Hermite poly-
nomials, and where the parameters �; �, and � are defined
from the parameters of the transfer matrix as

� = arccos ((A +D)=2)

�2 = 2B
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(6)

with jA+Dj 6= 2 and B;C 6= 0. One can also write the
expressions for the parameters of the transfer matrix as

A = cos � + � sin �
B = �2 sin �
C = �(�2 + 1)��2 sin �
D = cos � � � sin �:

(7)

The application of the relationships (5) and (7) for the con-
struction of the eigenfunctions in limiting cases like the
Fresnel transform (�2 ! 1 and � ! 0) and the scaling
transform (�4 ! 0 and �2 + 1 ! 0) is problematic. We
therefore confine ourselves to the GFT parametrized by a
matrix for which jA+Dj 6= 2 and B;C 6= 0. Note that
� is equal to 0 only for the case A = D = cos �. Then we
have B = �2 sin � and C = � sin �=�2, which represents
the scaled fractional Fourier transform for real �.



It is well known that the GFT operator RM produces a
linear transformation of the Wigner distributionWf (x; !) of
the signal f(x) in the phase space:

WRM [f ](x; !) = Wf (Dx� B!;A! �Cx):

Then the Wigner distribution of a self-GFT function is in-
variant under an affine transformation:

WfM (x; !) =WfM (Dx� B!;A! �Cx):

It follows from the cascading property for the GFT:
RM2RM1 = RM3 , whereM3 = M2�M1, and Eq. (4), that
the eigenfunction fM (x) for the canonical integral operator
RM with eigenvalue a, is also an eigenfunction with eigen-
value al for the GFT parametrized by the matrix M l, where
l is an integer. Then the function�n(x) defined by Eq. (5) is
also an eigenfunction for the GFT parametrized by the ma-
trix M l, whose parameters can be written as

A(l) = cos l� + � sin l�
B(l) = �2 sin l�
C(l) = �(�2 + 1)��2 sin l�
D(l) = cos l� � � sin l�:

(8)

From the linearity of the GFT and from the definition (4)
it follows that a sum of eigenfunctions for a given GFT op-
eratorRM with identical eigenvalues a is also an eigenfunc-
tion for RM with the same eigenvalue a. Then a self-GFT
function with eigenvalue a = exp(�i2�') can be repre-
sented as a superposition of certain modes �n(x) with the
indices fng satisfying the relationship

2�(N + ') = �(n + 1=2)�; (9)

where ' is a constant defining the eigenvalue of this eigen-
function and N is an integer. Let n1 and n2 be solutions of
this equation. Then we obtain that

2�(N1 �N2) = �(n1 � n2)�:

It is easy to see from this relationship that for a matrix
for which the parameters A and D are such that �=2� =
arccos ((A +D)=2) =2� is complex or irrational, n1 = n2
is the only solutionof Eq. (9). Therefore the functions�n(x)
are the only solutions of Eq. (4).

It follows from Eq. (6) that if jA +Dj > 2, the parame-
ters �; �2, and � become complex:

� = �k + i(�1)karccosh ((A+D)=2)

�2 = �i2B ��4� (A +D)2
���1=2

� = �i(A �D)
��4� (A+D)2

���1=2 :
As an example let us consider the eigenfunctions for the
GFT parametrized by the matrix

M =

�
cosh� �2 sinh�

sinh�=�2 cosh�

�
(10)

with real � and �. SinceA = D, it follows from Eq. (7) that
� = 0 and B = ��4C, which yields �2 = i�2 and � =
i�. The set of orthonormal eigenmodes (5) with eigenvalues
a = exp((n+1=2)�) for this system can now be written as
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Thus the chirp function
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is self-reproducible under the GFT parametrized by the ma-
trix (10). Note that the eigenvalues of the different modes
�n(x) and �m(x) for the same angle � are different. This
means that a superposition of these modes is not an eigen-
function of the corresponding GFT.

For the case jA+Dj < 2, the parameters �; �2,
and � are real. Moreover we can always take �2 >
0 in Eq. (6) by choosing the appropriate sign of � =
� arccos ((A +D)=2).

If the parameters of the transfer matrix are such that
�=2� = � arccos ((A+D)=2) =2� is rational, � = 2�m=k
where k andm are relatively prime integers andm < k, then
there are several sets of indices fng which satisfy Eq. (9).
Since the eigenfunction for the GFT parametrized by a ma-
trix M for which � = 2�m=k, is also an eigenfunction
for the cascade of such GFTs with parameters defined by
Eq. (8), it is more easy to construct the eigenfunction related
with the matrixM l such that �l = 2�ml=k = 2�N+2�=k,
where N is an integer. Using the periodicity property of
trigonometric functions we obtain that the eigenfunction for
the GFT parametrized by a matrix M with � = 2�m=k, is
the eigenfunction for the GFT related to the matrix M1=m

with � = 2�=k. It is easy to see that for � = 2�=k we
have k different sets of modes for which relation (9) holds:
n = L + kl, where L is an integer constant from [0; k[
and l is an integer. Then a self-GFT function with eigenvalue
a = exp(�i2�(L + 1=2)=k) is defined as

fLk (u) =
1X
l=0

gL+kl�L+kl(u); (12)

where gL+kl are complex constants. This function is also
an eigenfunction with eigenvalue a = exp(�i2�(L +
1=2)m=k) for the GFT parametrized by the matrix Mm for
any integer m.

If k is even, then as it follows from Eqs. (12) and (5), the
self-GFT function is even for evenL: fLk (�u) = fLk (u), and
odd for odd L: fLk (�u) = �fLk (u).

It is easy to see that if fM (x) is an eigenfunction for
the operator RM with eigenvalue a, then its complex con-

jugate f�M (x) is also an eigenfunction for R eM , where eA =



D; eD = A, and eB = B, with the same eigenvalue a. In-
deed if jA +Dj < 2, then the complex conjugate of the
eigenmode ��n(x) can be derived from �n(x) by changing
in Eq. (5) � to ��, which corresponds, in accordance with
Eq. (6), to the matrix fM . For the case of the fractional FT or
scaled fractional FT (� = 0) we obtain that if f�(x) is an
eigenfunction for the fractional FT operatorR� with eigen-
value a then its complex conjugate f��(x) is also an eigen-
function for the same operatorR� with the same eigenvalue.

As well as in the case of the self-fractional Fourier func-
tions, the self-GFT functions for the same operator with dif-
ferent eigenvalues (i.e., different indices L) are orthogonal
to each other, because they are expanded into disjoint series
of the orthogonal functions �n.

Due to the fact that the functions�n form a complete or-
thogonal set, any function g(u) can be represented as their
superposition

g(u) =
1X
n=0

gn�n(u): (13)

Subdividing the series into partial ones

g(u) =
k�1X
L=0

 
1X
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gL+kl�L+kl(u)

!
=

k�1X
L=0

fLk (u) (14)

we have that a function g(u) can be represented as a linear
superposition of k orthogonal self-GFT functions fLk (u) of
a given operatorRM , where � = 2�=k. For k = 2 we obtain
the function decomposition into the even and odd parts. Note
that there are a number of operators described by the same
�, which differ from each other by the parameters � and �.

On the other hand a self-GFT function for the operator
RM parametrized by a matrixM such that � = 2�m=k, can
be constructed from any generator function g(x) through the
following procedure

fLk (u) = C

k�1X
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(15)
where C is an arbitrary complex constant. This can be
proved by using Eqs. (13) and (15). Indeed,
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Then choosing the constant C in Eq. (15) according to
C = k�1 exp (i2�(L+ 1=2)), we obtain that this procedure
repeated for L = 0; :::; k� 1 corresponds to the signal de-
composition into a set of k orthogonal self-GFT functions
fLk (u) of a given operator RM , where � = 2�=k.

We finally note that the signal decomposition on the fi-
nite set of the orthogonal GFT-functions for given RM can
be useful for signal analysis, filtering and securing informa-
tion.

REFERENCES

[1] D. F. V. James and G. S. Agarwal, “The generalized
Fresnel transform and its application to optics,” Opt.
Commun. 126 (1996) 207–212.

[2] M. Nazarathy and J. Shamir, “First-order optics - a
canonical operator representation: lossless systems,” J.
Opt. Soc. Am. A 72 (1982) 356–364.

[3] V. Namias, “The fractional order Fourier transform and
its application to quantum mechanics,” J. Inst. Math.
Appl. 25 (1980) 241–265.

[4] D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann,
“Self-Fourier functions and fractional Fourier trans-
forms,” Opt. Commun. 105 (1994) 36–38.

[5] T. Alieva, “On the self-fractional Fourier functions,” J.
Phys. A 29 (1996) L377–L379.
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