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ABSTRACT

Microcalci�cations are tiny calcium deposits in breast
tissues. They appear as small bright spots on mammo-
grams. Since microcalci�cations are small and subtle
abnormalities, they may be overlooked by an examining
radiologist. In this work, we propose microcalci�cation
segmentation and mammogram enhancement methods
based on nonlinear subband decomposition structures
and outlier detection. The mammogram image is �rst
processed by a nonlinear �lter bank, then the loca-
tions of the outliers are determined by outlier labeling
method. The proposed method can also be used in the
three-dimensional reconstruction of microcalci�cation
clusters. Simulation studies are presented.

1. INTRODUCTION

Breast cancer is one of the most deadly diseases for
middle-aged women. One out of eight women is prone
to this disease in her lifetime [1]. The success of
treatment depends on early detection. Breast cancer
detection on mammograms (X-ray images of breasts)
is currently carried out by radiologists who examine
mammograms with a magnifying glass to �nd out tu-
mors such as microcalci�cations, masses, and stellate
lesions [2].
Clustered microcalci�cations are observed between

30% and 50% of breast cancer cases [3]. Microcalci�ca-
tions are tiny calcium deposits in breast parenchymal
tissue structures, which appear as small bright spots
on mammograms. Since microcalci�cations are small
and subtle abnormalities, they may be overlooked by
an examining radiologist. For instance, retrospective
studies indicate that between 10%-30% of the unde-
tected breast cancers are actually visible on mammo-
grams [4]. Therefore, computer-aided diagnosis is an
important research area [5].
In microcalci�cation detection schemes, parts

of mammogram image with microcalci�cations are

marked as suspicious regions. Within these marked re-
gions, individual microcalci�cations can be segmented
through further processing. The shape and exact ex-
tent of segmented microcalci�cations can provide valu-
able information to radiologists in their diagnosis and
classi�cation of the abnormalities as benign or malig-
nant. They can also be used in three dimensional recon-
struction of microcalci�cations within the breast struc-
ture [6].
Individual microcalci�cations can be segmented in

a two-stage process. The �rst stage is removal of
the breast structure corresponding to the healthy tis-
sues. The second stage is statistical outlier detection.
Bandpass �ltering, nonlinear `subband' decomposition,
adaptive �ltering, and adaptive �ltering based subband
decomposition can be used to remove the underlying
breast structure from mammogram images [5]. After
this step, the remaining detail image mainly contains
microcalci�cations as well as some additional noise.
Because of their impulsive characteristics on mammo-
grams, microcalci�cations will produce outliers in this
detail image. Therefore, an outlier detection method
can single out these abnormalities. Finally, segmented
microcalci�cations can be combined with the original
mammogram image to get visually enhanced mammo-
gram images. Ffrench et al. observe that adaptive �l-
tering enhances the mammogram images by predicting
the breast tissue and leaving the small microcalci�ca-
tions in the error image [7].
In Section 2, nonlinear �ltering based microcalci�ca-

tion segmentation is introduced. Mammogram image
enhancement is presented in Section 3.

2. MICROCALCIFICATION SEGMENTATION
USING NONLINEAR FILTERING

Nonlinear �lters such as median type �lters have been
previously used for the detection of microcalci�cations
by Chan et.al. [4]. In their work, the e�ects of lin-
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Figure 1: Nonlinear Subband Decomposition Struc-
ture.

ear and nonlinear �lters and their Region of Support
(ROS) on the detection and enhancement of microcal-
ci�cations are investigated. A median �lter with a 9�9
support is found to be most e�ective on mammogram
images with simulated microcalci�cations in [4]. How-
ever, such a median �lter cannot be e�ective in elim-
inating all of the microcalci�cations on the mammo-
gram images in every database [5].

2.1. Nonlinear Subband Decomposition

Recently, the `subband' decomposition using nonlinear
�lters have been proposed and used in image coding [8]{
[9]. We also investigate the use of nonlinear �lters and
�lterbanks in the analysis of mammogram images, mi-
crocalci�cation segmentation and mammogram image
enhancement.
Figure 1 shows the block diagram of the nonlinear

subband decomposition structure used by Hampson
and Pesquet [9]. This structure is based on the lifting
scheme of Sweldens [10]. It is obtained by replacing
linear �lters of the lifting �lter bank by nonlinear op-
erators H and G. The approximate signal ya, and the
detail signal yd are obtained from the input signal x[n]
as follows [9]:

ya[n] = x1[n] +G(yd)[n]

yd[n] = x2[n]�H(x1)[n] (1)

where x1[n] = x[2n � 1], x2[n] = x[2n] which are the
odd and even samples of the input x[n], respectively.
The corresponding synthesis equations are:

x0

1
[n] = ya[n]�G(yd)[n]

x0

2
[n] = yd[n] +H(x 0

1
)[n] (2)

In this structure, perfect reconstruction is achieved as
x0

1
[n] = x1[n] +G(yd)[n]�G(yd)[n] and x

0

2
[n] turn out

to be odd and even samples of the original signal, x[n],
respectively.
In the mammogram image analysis, H is chosen as

a median �lter. A median �lter eliminates impulsive
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Figure 2: Median �lter based nonlinear processing (a)
A line extracted from the mammogram image (b) the
median �lter output (c) the di�erence between the sig-
nals in (a) and (b).

type structures in an image. As microcalci�cations ex-
hibit impulsive character, a median �lter with suitable
ROS can eliminate these abnormalities from the mam-
mogram image. The detail signal, yd[n] in Equation 1 is
obtained by subtracting the median �ltered image from
the original image. Therefore, we expect that mainly
microcalci�cations are observed in yd[n]. The nonlin-
ear operator G will be chosen as the outlier detection
scheme, which is discussed in Section 2.2.
Figure 2 shows the outputs at di�erent stages of the

nonlinear processing. Figure 2 (a) illustrates an origi-
nal line of mammogram image which contains a micro-
calci�cation. Figure 2 (b) shows the same line of im-
age after median type nonlinear �ltering. Most of the
noise as well as microcalci�cations are not present in
the output. As can be observed in this �gure, the out-
put of the median �lter mainly represents the relatively
smooth part of the mammogram image corresponding
to the normal breast tissue. Figure 2 (c) displays the
di�erence between the original line of image and the
median �lter output. In the di�erence image mainly
the microcalci�cation is observed.
There are di�erent approaches to remove the under-

lying breast structure from mammogram images [5].
Figure 3 (a) shows the a line of mammogram image.
All the other images are the detail images which are
obtained by bandpass �ltering in Figure 3 (b), adap-
tive �ltering in Figure 3 (c), nonlinear subband decom-
position in Figure 3 (d) and adaptive �ltering based
subband decomposition in Figure 3 (e). It can be ob-
served from these �gures that the detail images are
similar and they produce high values at the locations
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Figure 3: Comparison of detail images produced by dif-
ferent breast structure removal operations. (a) Origi-
nal line of mammogram image, (b) bandpass �ltering,
(c) adaptive �ltering, (d) nonlinear subband decompo-
sition (e) adaptive �ltering based subband decomposi-
tion.

of microcalci�cations. The number of samples in the
detail image Figure 3 (e) is half of those of the other de-
tail images because of downsampling operation in the
decomposition structure. However, downsampling op-
eration can eliminate some of small microcalci�cations
if the resolution of the scanner is not high enough.
The nonlinear subband decomposition structure il-

lustrated in Figure 1 can be extended to two dimensions
in a straightforward manner [8, 11]. In two dimensions,
the detail image, yd[m;n] is obtained by simply sub-
tracting the median �ltered image from the original im-
age. In this detail image higher order statistical based
microcalci�cation detection can be carried out [12].
The detail image is further processed by the non-

linear operator G to segment individual microcalci�-
cations. We chose G as a statistical outlier detection
scheme because individual microcalci�cations appear
as outliers in the detail image. Section 2.2 discusses
the use of boxplot outlier labeling method in microcal-
ci�cation segmentation.

2.2. Boxplot Outlier Labeling Method

An outlier is \an observation (or subset of observations)
which appears to be inconsistent with the remainder of
that set of data [13]." Therefore, the microcalci�ca-
tion segmentation problem is equivalent to outlier de-
tection in the detail subimage. Generally, due to the
random nature of data, identifying and handling indi-
vidual outliers is not an easy task. Nevertheless, there
are numerous techniques available to detect and handle
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Figure 4: Microcalci�cation segmentation using outlier
detection: (a) A horizontal line of the mammogram
image which is known to contain a microcalci�cation,
(b) high-band sub-signal xh, (c) output of the outlier
detection method.

outlier locations [14]. In this work, we used the boxplot
outlier labeling method [14] which is available in most
of the statistical software packages.

Figure 4 (a) shows a horizontal line of mammogram
image which is known to contain a microcalci�cation.
Figure 4 (b) depicts the di�erence between the original
signal and its median �ltered version. This di�erence
plot corresponds to the detail signal of the nonlinear
decomposition structure. The boxplot outlier labeling
method is applied to this detail signal. Figure 4 (c)
illustrates the output of the outlier detection scheme.
Similar results are also obtained in two dimensions [5].

The output of the boxplot outlier detection method
produce the segmented microcalci�cations. The out-
put can either be used in the three{dimensional recon-
struction or in mammogram image enhancement which
is discussed in the next section.

3. MAMMOGRAM IMAGE ENHANCEMENT

It is desired that segmented microcalci�cations be read-
ily noticeable in an enhanced version of the original
mammogram image. Therefore, the output of the
microcalci�cation segmentation is combined with the
original mammogram image to get an enhanced ver-
sion of the mammogram. We propose three di�erent
approaches: superposition, ampli�cation and nonlin-
ear subband decomposition based enhancement. In this
section superposition and ampli�cation based enhance-
ment schemes are considered. The use of nonlinear sub-
band decomposition structures in mammogram image
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Figure 5: Superposition based mammogram image en-
hancement: (a) A horizontal line of the mammogram
image, (b) the detail signal, yd[n] obtained by nonlin-
ear subband decomposition, (c) output of the outlier
detection method, (d) microcalci�cations are enhanced
by superposition.

enhancement is discussed in [12].

In the superposition approach, segmented microcal-
ci�cations are superimposed to the original mammo-
gram image at the locations of microcalci�cations. In
the ampli�cation based approach, the original mammo-
gram image pixel values are weighted by a �xed weight,
again at the locations of microcalci�cations.

Figure 5 illustrates the steps of superposition based
mammogram image enhancement on a horizontal line
of a mammogram image. In particular, Figure 5 (a) de-
picts the original line of a mammogram image which is
known to contain three microcalci�cations. The di�er-
ence between the original signal and its median �ltered
version is shown in Figure 5 (b). This di�erence plot
corresponds to the detail{signal, yd[n], of the nonlinear
decomposition structure. Figure 5 (c) illustrates the
output of the outlier detection scheme. Three micro-
calci�cations are successfully segmented. The micro-
calci�cations are more visible in Figure 5 (d). Similarly,
the mammogram image enhancement by ampli�cation
is shown in Figure 6. The ampli�cation weight it 20%.

In case enhancement of the tissue around the mi-
crocalci�cation regions is also desired, the �nal image
can be displayed after scaling so that the full dynamic
range of the display device is employed. This operation
is called contrast stretching [5].

Figure 7 illustrates the e�ects of the two di�erent en-
hancement operations on a part of a mammogram im-
age shown in Figure 7 (a). In Figure 7 (b) the contrast
stretching operation is applied to the original image. In
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Figure 6: Ampli�cation based mammogram image en-
hancement: (a) A horizontal line of the mammogram
image, (b) the detail signal, yd[n] obtained by nonlin-
ear subband decomposition, (c) output of the outlier
detection method, (d) microcalci�cations are enhanced
by ampli�cation.

this picture both the microcalci�cations and the back-
ground structure is enhanced. Therefore, the visibility
of the microcalci�cations is slightly better. In Figures 7
(c) and (d) superposition and magni�cation based en-
hancement operation results are shown, respectively.
In both �gures the visibility of microcalci�cations is
signi�cantly improved.

4. CONCLUSION

In this paper, we present nonlinear subband decompo-
sition based microcalci�cation segmentation and mam-
mogram image enhancement methods. Experimen-
tal studies on mammogram images indicate that these
methods can be used as diagnostic tools in breast can-
cer detection.

In the segmentation and enhancement processes non-
linear operations with relatively high computational
costs can be used while keeping the overall computa-
tional complexity of the system low. Because, only sus-
picious regions are considered rather than processing
the entire image for segmentation and enhancement.
Future work will concentrate on developing similar seg-
mentation and mammogram image enhancement meth-
ods for other breast cancer indicators, mass lesions and
stellate lesions.
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Figure 7: Results of mammogram image enhancement:
(a) Part of a mammogram image to be enhanced (b)
Output of the contrast stretching operation (c) Super-
position based enhancement (d) Magni�cation based
enhancement.
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