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ABSTRACT

Many optical flow estimation techniques are based on the
differential optical flow equation. For these techniques, a lo-
cally constant flow model is typically used to allow the con-
struction of an over-determined system of constraint equa-
tions. In this paper, the problem of solving the system of
optical flow equations using a constraint total least squares
(CTLS) approach is investigated. It is shown that by mod-
ifying the CTLS approach it becomes identical to a maxi-
mum likelihood (ML) approach to the problem. This mod-
ification improves the CTLS estimates especially when the
estimation window size is small, as is demonstrated experi-
mentally.

1. INTRODUCTION

Optical flow estimation plays an important role in many vi-
sual communication applications. There are a number of
techniques reported in the literature for the solution of this
problem [1]. When a video sequence with high frame rate
is considered, differential techniques are of particular in-
terest. For techniques based on theoptical flow equation
[1], a locally constant flow model is typically used to al-
low for the construction of an over-determined system of
constraint equations,Ax = b, whereA is composed of spa-
tial intensity derivatives,b contains the temporal intensity
derivatives, andx represents the optical flow field. In this
formulation,A andb are corrupted by correlated noise.

Some work has been done in dealing with correlated
noise in image processing [4, 2, 5, 3]. For example, the total
least squares (TLS) method has been extended to the con-
strained total least squares (CTLS) method by taking into
account the noise correlation in[Ajb]. It has been success-
fully used to solve image restoration problems [4, 2]. How-
ever, when applying this technique to optical flow estima-

tion, it tends to give noisy results when the estimation win-
dow size is small [7]. Although thresholding can be used
to regularize the estimation process using a reliability mea-
sure, an alternative way is proposed in this paper to solve
the problem of noisy estimates of CTLS when the number
of observations is small.

There are two major sources of errors in the system of
optical flow equations. The first one is due to the noise that
corrupts the image and the second one is the error intro-
duced by the numerical approximation of the derivative es-
timates. Even though CTLS addresses one of the problems
in the system of optical flow equations, namely, the fact that
bothA andb are corrupted by correlated noise, it does not
take into account the fact that in general the noise which cor-
ruptsb (composed of temporal derivatives) is larger than the
noise which corruptsA (composed of spatial derivatives).
Since total least squares based techniques are very sensitive
to noise model, CTLS tends to give noisy results when the
number of observations is small.

In this paper, we introduce an adjustment term to the
cost function derived from CTLS. The resulting cost func-
tion is equivalent to a maximum likelihood (ML) formula-
tion for optical flow estimation. Experiments show that this
new technique performs better than CTLS, especially when
the window size is small.

2. PROBLEM FORMULATION

The most commonly used constraint in optical flow estima-
tion is the optical flow equation:
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whereEt(�) is the image intensity at timet, @Et=@x and
@Et=@y are the spatial derivatives of the image intensity



functionEt(�), @Et=@t is the temporal derivative of the im-
age intensity function, and(dx=dt; dy=dt)T is the optical
flow vector. Using a square

p
m�p

m estimation window,
the optical flow estimation problem can be expressed as the
solution of an over-determined system of optical flow equa-
tions [8]
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with x = (u; v)
T being the optical flow vector at image po-

sitionssi = (xi; yi)
T ; i = 1; :::;m. If neitherA nor b are

corrupted by noise, Eq. (2) should be a consistent system
and have an exact solution. However, in optical flow esti-
mation,A is composed of the spatial gradients, which are
estimated using numerical differentiation of the noisy im-
age data. Better performance can be expected if the noise
in A and the fact that correlation exists between gradient
estimates of neighboring pixels is taken into account [5].

3. CTLS FORMULATION

Let�A and�b be the perturbation matrices that result in a
consistent system of equations, that is,

(A+�A)x = b +�b;

or equivalently,

Ax + (�Ax ��b) = b: (3)

If the noise in�A and�b can be modeled by

�Ax ��b = L(x) � �; (4)

whereL(x) is a coloring matrix and� a white noise vector,
the problem takes the form:

min k�k22; subject toAx + L(x) � � = b: (5)

Solving for � from the constraint in Eq. (5) leads to
� = L+(x) (b�Ax), whereL+(x) denotes the Moore-
Penrose pseudo-inverse ofL(x). The minimization ofk�k22
then results to the minimization of

J(x) = (b �Ax)T �(x)+ (b �Ax) ; (6)

where�(x)+ = L+(x)TL+(x). To apply this technique to
the estimation of the optical flow, we must define the noise
vector� and derive the coloring matrixL(x) according to
the noise model in the spatio-temporal matrix[Ajb].

Figure 1: Left: the neighborhood structure for derivative
estimation. Right: pixels used for optical flow estimation at
positionsa.

The spatio-temporal derivatives@Et

@x (si), @Et

@y (si), and
@Et

@t (si) are usually estimated using finite difference equa-
tions. Without loss of generality and for ease of presenta-
tion, L(x) is derived in the following using a simple two-
point backward difference equation. Given the neighbor-
hood structure shown in Figure 1, the image intensity deriva-
tives at pixel positionsa can be calculated using the follow-
ing equations:
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If a 3-point estimation window (Figure 1) and Eq. (7)
are used,A andb can be written as:
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If the image intensities are corrupted by i.i.d. noise, the
entries inA andb are corrupted by correlated noise. That
is,

Et(sj) = �Et(sj) + �j ; j = a; b; c; d; e; f and

Et�1(sk) = �Et�1(sk) + �0k; k = a; b; c; (9)

where�Et(�) is the true image intensity at timet, and�a; :::; �f
and�0a; �

0

b; �
0

c represent i.i.d. zero mean noise with variance
�2� . Letting

� = (�d �e �f �c �b �a �0c �0b �0a )T ;

the matrix�(x) can be computed as ([7])

�(x) =
�
L+(x)TL+(x)

�+
=

0
@ �21 �22 �23

�22 �21 �24
�33 �24 �21

1
A�2� ;

(10)
where

�21 = v2 + u2 + (u+ v + 1)2 + 1



�22 = uv

�23 = �v(u+ v + 1)

�24 = �u(u+ v + 1):

The minimization ofJ(x) in Eq. (6) with respect tox results
in the CTLS estimate of the optical flow at pixel positionsa.
This method can be generalized for larger window sizes and
for different finite difference equations.

4. ML FORMULATION

In previous discussions, a general probability distribution
is assumed for the noise vector�. When� is a correlated
Gaussian noise vector, we have

b = Ax + n; n � N(0; C(x)); (11)

whereC(x) is the noise covariance matrix. The probability
density function ofp(bjx) can be written as

p(bjx) = N(Ax; C(x))

=
1
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The ML estimator can be elaborated as follows:
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Therefore, the cost function can be defined as:

JML(x) = log jC(x)j+ (b� Ax)T C(x)�1 (b �Ax) :
(14)

log jC(x)j can be ignored when Eq. (13) is used to solve es-
timation problems where the observation vectors are large.
However, for optical flow estimation, since the observation
vector is relatively small (25-by-1 for a5 � 5 estimation
window),log jC(x)j has significant contribution to the error
function. In Eq. (6),�(x) plays a similar role asC(x) in
Eq. (14). It is shown empirically that by addinglog j�(x)j
to Eq. (6), the performance of the CTLS optical flow esti-
mator is improved.
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Figure 2: The performance of CTLS when the model fits.

5. EXPERIMENT

Total least squares based techniques are very sensitive to
model errors. In this section, a simulation is first conducted
to show the performance of the CTLS estimator when the
noise model is accurate. In this experiment, Eq. (4) is used
to generate a system of optical flow equationsAx = b.
Here,� is a50� 1 random vector composed of i.i.d. Gaus-
sian noise components. The size of the estimation window
is 9 � 9. The coloring matrixL(x) is a linear function of
x. That is,L(x) = [L1jL2]x + L3, whereL1, L2, andL3

are constant81 � 50 matrices. Given� andL(x), �A and
�b can be generated to form Eq. (3). The true solution of
x is the vector[1 1]T . Three different techniques, LS, TLS,
and CTLS are used to estimatex and the mean squared er-
rors (MSE) of the estimates versus different noise levels are
shown in Fig. 2. In this example, the components inA and
b conform to the noise model assumption of the CTLS ap-
proach. The estimates from the LS and CTLS methods are
not thresholded while the estimates from the TLS method
are thresholded using the reliability measure to be discussed
later.

In practical situations, unless a very high frame rate im-
age sequence is used, the noise that corruptsb is usually
much larger than the noise that corruptsA due to the dif-
ficulty in temporal derivative estimation. Therefore, CTLS
does not perform well and thresholding is required to regu-
larize the estimates [7]. By introducing the extra term from
the ML formulation, the estimates become more accurate
even without thresholding. In the second and third exper-
iments, a sequence of an image undergoing uniform mo-
tion is synthesized. The simulated sequence is generated
by translating the256� 256-pixel “USC woman” image to
simulate a 2-pixel motion in the horizontal direction. There
is no motion in the vertical direction.



Fig. 3 shows the performance of the estimator with dif-
ferent window sizes. The image sequence is corrupted by
zero mean white Gaussian noise with variance�2� = 16. For
the CTLS technique, singular value decomposition of[Ajb]
is first computed for thresholding purpose. The right singu-
lar vector,�, associated with the smallest singular value can
be used as a reliability measure. If� = [�1; �2; �3]

T , the
estimate is considered unreliable when�3 is less than a pre-
determined threshold value [6]. The ML estimates are not
thresholded. It is clear that when the window size is small,
ML performs better than CTLS estimation.

The third experiments shows the performance of the es-
timator under different noise levels. In Fig. 4, the image se-
quence is corrupted by white Gaussian noise and a5�5win-
dow is used for estimation. Notice that ML estimation does
not need thresholding and it performs better than thresh-
olded CTLS estimation. As the experiments show, adding
the extra termlog j�(x)j to J(x) improves the performance
of the CTLS estimator.
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Figure 3: Estimation error as a function of window size.

6. CONCLUSIONS

According to the experiments, the additional term in the ML
formulation helps the CTLS approach to get better results
when the number of observations is small. This is impor-
tant because the CTLS method has high computational cost
when the estimation window is large. Another problem with
the CTLS technique is that it is very sensitive to the noise
model. In the case of optical flow estimation, the noise inb
is typically much higher than the noise inA. This deviation
from the assumption thatA andb are corrupted by noise
of similar strength hinders the performance of the CTLS
method even with the additional correction term. Possible
solutions to this problem are currently under investigation.
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Figure 4: Estimation error as a function of noise level.
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