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ABSTRACT

This paper will focus on propusing 2 new objective
function of autoregressive moving average (ARMA)-
model-based speciral estimation. The objective function is
derived by assuming that the obtained residual  sigoal 13
identically and independenily distributed. The probability
density finciion is assumed to be rdigtnbotion.  Small
puttions of residual signals with large amplitude is given
8 small weighting factor and large portions of residual
signals with small amplitude is assiggned a large weighting
facten. By doing se, the effect of large amphitude error
signal is suppressed and the adaptation step is lesa
altected. ‘The simulation reselts for image enhanverment
show that when il input is impulsive noise contaminated
images, the obtained processed image by using f-
distribution. with small & degrees of freedom Is much
betier than that when large o is applied.

1. INTRODUCTION

Due to ity simplicity, autoregressive (AR)-model-based
spectral estimation which contain only 7eroes has been
commonly used in parametric spectral estimation, such as
in the speech analysis [1]. Unfortunately, AR-model-based
5 considered insufficient in many cases. 1t is nol enough
for analyzing sigmals which conrain poles such as nasal
sound.  For those kinds of signals the autoregressive
moving average (ARMA)-based - model is considered to be
are appropriate,

It has been commonly known that the nature behavior of
the sipnals affect the accuracy of the estimation result[Z].
Conventionally, the optimal models arc solved by the least
square method by numnizing the sum of the siquare of the
residugl signal. By doing so, all parts of (he signal are
assipned eqnsl weighting finction so that small parts of the
signaly with large amplitude hias mote effect to the nhrained
speciral estimaie than rthat of the large parts with small
- amplitude. The performance of the estimator deteriorates.

The obtained estimate is very much affected by farpe
amplilude residual parts.

In the past. many effonis have been done o improve the

accuracy of the AR-model-based speciral estimation. Lt is
done by suppressing the effect of large amplitude residual
signal parts. A nunlinear weighting function is applied 10
reduce 1he effect C(me of Lhe most popular nanlinear
functions is derived by assuming that the residual signal is
identically and independently distributed with  Hulwe s
distribution [3). By dving se. the small partions of larpe
amplitude errars are assipned a small weighting Factor. On
the other hand, large weighting factor is applicd for large
poitions of small amplitude crror signals. Recently. we
proposed  the usage of f-distriburion assimption (o reduce
the effect of large amphtude for speech analysis|2]. We
have shown and preved that the effeet of large amplitule
error is tess by applying &~disinbution assumprion than rhar
by urilizing the Huber's distribution assumption [2].

Extending the alrcady proposed method in [21, in this papur
we prupese 8 robust speciral esrimation method based on
ARNMA model to be able to analyze signale with pales and
zeroes. The robustness i3 achicved by using the -
distnibution assumption to reduce the effect of large
annplilude error signals.

The proposed algorithm  hae been applied for analyzing
synthetic signals which were gencrated by exciting a certain
ARMA syslem  with Gaussian and impulsive inpil. The
simulation results show that when Lhe Gaussian excilalion
18 used, the accuracy of lhe obtained estimate by using the
proposed  and the conventional least syuare methods are
compameble. On the otffer hand, when the excitation 12
impulsive, the accuracy of the estimation results can be
improved by applying the proposed s-distribution
assumption with simall .

1. THE FROPOSED METHOD

We consider a zero mean signal which ts the output of the
P-th and g-th order time invarianl auturegressive moving
average ARMA(p.g) sysiem as piven in equation (1). The



signal is considered within o window @ <=n <= & - 1)},
The length of the window & is assumed (o be very long, &
—+ m. The output or the cbserved signal is wfa). The
excitation signal is wi). The parameter of the syslem is
denoted as aff} and ff).  The order of the ARMA system,
poand g have to be predetermined based on the
apphcations.
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The transfer function of the system between the input and
oulput is shown in equalion (23,
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The speetrum of the signal can be obtained be calenlating

Hie ™) by setting = - #* Therelore, it is necessary Lo

eslimate a'fi), by
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It is done by estimating an inverse system
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The input of the ARMA estimator is the ohserved signal
tfie) anel the output is the residual signal o),

In the conventional spectral catimation, it is assumed that
the crror or the residual signal is 11D with Gaussian
probatility density function. Tn this case, the optimal
parameter is calculated to minimize the sum of the error
signal. Al portion of the error signal are assigned the same
weighting factor, so that large amplitude error signals have

more ¢ffect on the obtained adaptation step than that of
small amplinude error signals.  The performance of the
estimator  deteriorate when the actual enxcitation s
impulsive non Gaussian signal.

In this paper, we propose that the usage of the ¢
distribution with small o assumption 1o derive e new

uldeclive function. By doing so, we assume that the
probability density function of the error signal is [4]

S ()= Kafwal )} (8)

where K12 a constant depend on the depree of freedom o
and it is defined as
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The probability density function (PDFY frx} is depicted in
Fipure |
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Figure 1. The probability density fimction (PDF) 7,0 for
VArQUS .

Please note that £.¢%) is the Gaussian distribution with
unity standard deviation and zero mean N /) which is
used in the conventional least square method  For
estimation purposes, #ife)  has to have a fnite second
moment [4], Since f4x) for @ < 3 has an infinile second
moment, in this paper we use & == 3. By using small o
we assume that the residual is more bnpulsive than that in
case of Gaussian assurmption.

The optimal adaptive system coefficient is selected to
maximize the log likelihood of the error sigoz! in (8) .

L =log Ka - L(o(n)) (I

where
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and £2{.} is the mean operator. The robust scale estimate is
calculated by

5 = median [o(n) (13)

along a certain specified window 0 <= <=l = 7).

Larger sef will produce more accurate result. On the other
hand, larger scf needs more calculations to solve the
median.  Compromizing buth factors. in this paper we
select a fixed sef = 64,

Since the degree of freedom o is a pre-selected value. the
first term in (11} is 4 constant. Thus, maximizing the log
lkehood function in (11) is solved by minimizing (12)
using the Mewton Raphson nonlincar optirmzation]5]. The
optimal coefficient is solved iteratively by
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where the iteration number is defined as ¢. The gradient
vector is defined as
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and the Hessian matrix is
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where the input vector is defined as
u(rr) = col [u{u + f}]
and J =~ == [. We alse defined the output veclor as
o) :cnl[a{u + j}] {16)

and /<= <=y A certain initial value for afi} and &6 has
to be selected to start the iteration process.
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When we set the degrea of freedom o = o, we get the
conventional least square approach for ARMA ostimator,
Therefore, the proposed ARMA estimatar can be regarded
as a generalization of the conventional least square methnd

The simulation rezults in section 3 show  that when the
excitaion signal is impulsive non-Gaussian, ly applying
small o assumption we can nhtain maore efficient and more
accurate estimate than that obtained by uaing large o ic
=20 as it s applied for the conventional least square
methed. Since in the real application, we have no a-prior
knowledge about the nature of the excitation signal and it
maybe impulse, we recommend the usage of the small
assumplion Lo get betier estimarion

3. THE SIMULATION RESULTS

The: propased estimation algerithm has been realized and applicd
th analyze a synihetie signal which has poles and 7orocs.  The

- svnthetic sighal was  penerated by feeding a cortain cxcitation

signal inte a ARMA(S,5) system. We are intended 0 cstimane
the spectrum of the signal. W uscd the zero mean and uhiy
variance randon Nr7,0) Gaussian  noisc as the first cxcilation
signal.  The noise was generated by wsing the  Box-Muller
tucknique[3]. The spectrum of the sipnal  was determined only
from the entpiit af swstem. No forther information was provided
into the estimator. The sampling frequency is assumed to be 10
Khz The starting value is selected to be a"(n} = 0 and b} — 0.
We applicd the Newton Raphson eration method to caleulaic
tho optimal cocfficicnt, We applicd u=3 and a=x. The obtained
speelral arg depicted i Figme | Those plots show that the
obtainod wslimate spectral by using a=3% and o=r arc almost
similar with the obtained periodogram  This results show Lhat
ihe propesed algarithm by using small « is also appropriate when
the signal is Ganssian ated not contaiming too mnny impulaive
paris. Therefore, the  conventional  Gaussian  assumplion s
sulficient o oblained accurate estimate. The proposcd algorithm
dnes not mtroduce additional error. The speetral shown in Tig. | s
Ihe average speciral caloulated from 100 frames. Fach hame is
236 meee and contaming 256 samples. We used reeLangulae
window for each framc.
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the abtained cstimate spectia using varions estimators when the exeitation is (Favsgian noise

Ihe second synthetic signal is penerated by feeding an
impulsive signal into an ARMA syslem. The imprlsive
signal is gencrated by applying a nonlinear function

| Lif g(i)

By =4=1if B =
I i}

(e

elsewhere

Where g(f) is the Gaussian noise,
arbitrary selecied 10 be 0,75,

In this paper & is

The: ideal and the average of the obtained estimate
spectra are given in Fig. 3. The average was calculated
from 100 frames, The plots on Fig. 2 show that when
o=r iz used, there are some ctror in the cstimated
epectral,

There are some deviations from the ideal apectrum,
This 18 because the estimator is very much affevted by
the large amplitude parts, This condition can be
improved by applying the proposed method with g=3.

By doing so the effect of large amplitude residual parts
is reduced su that it can he seen in Fig. 2 that the error
between the ideal and the estimate gpectra is smaller,

Theretore, since the nature of the excitarion signal s
unkiewn  a-prioei, we recommend the usapge of
digtribulion assumption with small o for ARMA
spectral estimation which has been proved to he
approgriate tor analyzing signal which has many larpe
amplitude parts sich ag in case of impulsive excitation
but also appropriate for analyzing signal which are nut
contaiting too many large amplitude parts such as in
Craussian excitation case,

We have also calculate the average error{AV) and the
standard deviation (SD) of the estinated results. The
AV and 5D are depicted in Fig. 3. Those plots alse
show that the error betwveen the ideal and the cstimated
speetral is smaller by applying small o than that when
large o is used The SI} of the error is also smaller
when small o i3 used. This result show that the
eslimated spectral is not very much affected by large
amplitude residual

4, CONCLUSIONS

We have presented a novel ARMA spectral estimator
system based on f-distribution with o deprees of



fiecdim assumption. The optimal coeficient s solved
by the Newton Raphson algorithm. In case when the
input is impulsive contaminated image, the error of the
obtained estimale spectral is smaller than that by using
the conventional least square  approach. Further
apphcations of the proposed algorithm is still studied
and will be reported somewhere else.
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Figure 3. The idcal and estimated spectra when the excitation is
rrprobsive,
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Figure 4. The average (AY) and the standard deviation of
the error between the ideal and the obtained estimate
: spectra,



