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ABSTRACT

A signal interpolation technique based on the Hilbert
transform of a signal is proposed. This technique can be
efficiently used for fractional time delay estimation. A
useful application of the technique is demonstrated using
examples of digital beamforming with wideband signals.
Conventional wideband signal beamforming is
computationally intensive due to the calculation of
fractional time delays. It is shown that the proposed
Hilbert transform based fractional time delay estimation
provides simple and computationally efficient, yet very
accurate results, and therefore, suitable for digital
beamforming of wideband signals.

1. INTRODUCTION

Wideband signals are usually used in active sonar systems
for the detection of underwater targets in the presence of
noise and clutter. By using matched filtering techniques
on the received echo signal, these signals can provide
accurate estimates of the targets' ranges and velocities (or
more precisely, range rates) [1]. Wideband signals such as
the linear frequency modulated (LFM) signals are used
because, by increasing the bandwidth of the transmitted
signal, it is possible to increase the range resolution
without affecting the velocity resolution. In addition to
velocity and range estimation, target bearing can also be
estimated using beamforming techniques used in array
processing [2]. However, beamforming with wideband
signals is a computationally intensive task. This is
because the efficient beamforming technique of complex
phase weight multiplication can not be used with
wideband signals. The beamforming is thus achieved by
delaying the sensor input signals. This is a time domain
technique. Alternatively, wideband beamforming could be
obtained in the frequency domain via FFT processing. But
this again is a computationally intensive method.

In the time domain method, for high resolution
beamforming, it will be necessary to use fractional input
time delays. This is usually achieved using an
interpolation and smoothing technique via over-sampling
of the input signal. This, however, is not computationally
efficient. In this paper, an efficient digital beamforming
technique that can be used with input sonar signal is
proposed. The beamforming is based on a non-linear
interpolation technique based on the Hilbert transform of
the input sensor signal.

2. WIDEBAND PROCESSING IN THE
DELAY - SCALE DOMAIN

Consider a single discrete scatterer (target) situated at a
range 0r  from the transmitter at time, 0=t  and moving

at a constant velocity ν  towards the transmitter. Suppose
the transmitted burst is described by )(ta . Then the

received backscatter from the single scatterer is given by,
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where )()(0 ννα −+= cc , and )(2 00 ντ += cr  is the

time taken by the back-scattered signal to reach the sensor
(round trip delay), and c  is the velocity of sound in the
medium under observation [1]. The factor 0S  describes

the reflectivity of the scatterer at range 0r  (at 0=t ). It

also includes the attenuation in the medium as well as the
receiver gain. Furthermore, it is assumed that 0S  is

independent of time. Note that, due to the scatterer
motion, the transmitted pulse )(ta  is compressed by a

factor of 0α .

For wideband signals, target detection is usually
performed by processing )(tg  via a matched filtering

approach in the delay-scale ),( ατ  domain. The delay-

scale domain matched filter is described by the following
equation.



dttatg ])[()(),( * τααατρ −= ∫  .                (2)

(The limits of integration are ±∞  unless otherwise
stated.)

Suppose the wideband auto-ambiguity function of the
transmitted signal is denoted by ),( ατχ , i.e.

dttata ])[()(),( * τααατχ −= ∫ ,                   (3)

then equation (2) can be expressed as,
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In the delay-scale plane, ),( ατρ  peaks at 0ττ =  and

0αα =  which can be used to obtain the range and

velocity of the target. Note that )1,( =ατχ  is same as the

autocorrelation function of )(ta . The autocorrelation

function of )(ta is denoted in the paper as )(τR .

3. BEAMFORMING AND RANGE -
BEARING RESOLUTION PATTERN

Consider a linear sonar array of )1( +M  sensors with

uniform spacing d . The array weighting coefficient

corresponding to the thm  element is denoted by mw  and

the range 0r  of the target is considered to be measured

from the centre of the array. Suppose a plane wave signal
source arrives at an angle θ  measured with respect of the
normal of the array axis and the output of the beamformer

)(tg , is processed via a delay-scale ),( ατ  domain

matched filter as described in equation (2).

Consider the beamformer with no pre-steering delays.
Equation (4) can now be extended as follows.
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Evaluating the above equation at 0ττ =  and 0αα =
provides the signal energy of the detection process, i.e.
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where )(θB  defines an array directivity pattern (beam

pattern) which is dependent on the wideband ambiguity
function of the transmitted signal. Evaluating equation (5)
at 0αα =  the following could be obtained.
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The above can be considered as a range-bearing resolution
pattern. In a manner similar to the ambiguity function,
the function in equation (7) describes the achievable range
and bearing resolutions of the sonar system. Note that the
evaluation of the beam pattern and the range-bearing
resolution pattern needs the implementation of equations
(6) and (7) which requires delaying of the input signal by
a fraction of the sampling period. In this paper the time
delays require to evaluate equations (6) and (7) are
obtained via a non-linear technique. The technique relies
on the Hilbert transform of the input received signal.

4. EVALUATING A SIGNAL AT
FRACTIONAL DELAYS USING THE

HILBERT TRANSFORM

Let the sequence ℑ∈kkx ),(  has been obtained by

uniformly sampling a real signal 
kTt

tx =)(  at sampling

intervals of T . Consider the problem of estimating the
signal value )(tx  using the sequence x(k), at some time t

given by TkTt ε+=  where 10 ≤≤ ε . Suppose z(k) is the
analytic signal associated with x(k), i.e.

)}({)()( kxjHkxkz +=  ,                     (8)

where H{.}  denotes the Hilbert transform (H.T.) of a
signal. Using equation (8) the amplitude and phase of the
signal can also be obtained as,

))(arg()(;)()( kzkkzkA == φ  .                   (9)

The following points are noted:



1. In most of the applications in sonar the Hilbert
transform of the input signal is available at the
receiver without the need of additional processing.
This is because of the quadrature demodulation at the
receiver.

2. The functions A(k) and )(kφ  are both slow varying in

most of the signals used in active sonar. This is
because the matched filtering operation in equation
(2) results in slow varying signals for ),( ατρ .

As, A(k) and )(kφ  are slow varying it is possible to

linearly interpolate these signals to obtain an estimate of
the analytic signal at time TkTt ε+= . This is obtained
using the amplitude and phase of )( ε+kz  which is

derived using the following relations:

)()1()1()( kAkAkz εεε −++=+  ;

)()1()1())(arg( kkkz φεεφε −++=+ .             (10)

)( TkTx ε+  then results as the real part of )( ε+kz .

Table 1 shows the results of an experiment performed to
determine the accuracy of the proposed Hilbert transform
interpolation technique. The following Linear Frequency
modulated signal having a Gaussian shaped envelope was
used in the experiment.

)2cos()( 210 2

ttfetx c
t πβπ += −  ,                    (11)

with 24.0=cf  and 12.0=β . The signal duration was

selected as 11 +<<− t  seconds. At first a sequence x(k)
was obtained by sampling the signal in equation (11) by a
1Hz sampling frequency. Note that the signal in equation
(11) occupies the full Nyquist bandwidth Hz5.0± .
Suppose another sequence is defined as the values
obtained by sampling the signal x(t) at a frequency of d
Hz, i.e.

dtd txkx == )()(  .                      (12)

For ℜ∈d  we can estimate the sequence )(kxd  from the

sequence )(kx  using fractional delay estimation. The

exact value of )(kxd  can also be derived using equation

(11). Therefore, it is possible to calculate estimation error,
and thus evaluate various fractional delay sampling
algorithms using simulation. Table 1 shows the
performance results of the Hilbert transform interpolation
in calculating the fractionally delayed sample values. For
comparison purposes, results from a Linear Interpolation
algorithm is also shown in Table 1. Results from Table 1
demonstrate that the fractionally sampled sequence values

could be accurately estimated (within an error of 510− )
using the described Hilbert transform interpolation
technique, over a large range of the value d.

Value of
d

Error from
H.T.

Interpolation

Error from
Linear

Interpolation
0.092 6102403.7 −× 4.3975

0.320 6102402.7 −× 4.3975

0.900 6102413.7 −× 4.3989

1.100 6102370.7 −× 4.3931

3.900 610454.10 −× 3.9211

13.700 610990.11 −× 4.9335

TABLE 1 : Comparison of Hilbert Transform
Interpolation with Linear Interpolation.

5. GAUSSIAN ENVELOPED LINEAR
FREQUENCY MODULATED SIGNALS

The performance of the proposed digital beamforming
method, which uses Hilbert transform interpolation
technique, is demonstrated using Gaussian LFM (G-LFM)
signals. GLFM signals have been considered here as it
has been shown in [3, 4] that they can provide desirable
directivity patterns for target bearing estimation.
Furthermore, exact closed form expressions for G-LFM
signal beam and range-bearing resolution patterns have
been derived in [5] which could be used for verifying the
performance of the proposed technique.

The assumed G-LFM sonar transmission signals is given
by,

)2cos()( 22

ttfeta c
t πβπγ += −  ,                    (13)

where cf is the centre frequency and β  is the frequency

sweep rate. The parameter γ  controls the Gaussian

shaped amplitude of the transmitted signal. The auto-
correlation of the G-LFM signal in equation (13) is given
by
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where 0E  is the energy of the transmitted signal. Using

the result of equation (14) it is possible to derive



theoretical expressions for the beam pattern and range –
bearing resolution pattern of G-LFM signals [5].

Consider the following G-LFM signal simulation
example. The signal parameters were selected as

Hzfc 200= , sHz /112=β , 2πγ =  with a sampling

frequency of 1000 Hz. No noise was used in the
simulation. Figure 1 shows the matched filter output of
the received signal at one sensor. Note that the matched
filter output has a smooth amplitude which justifies the
use of the Hilbert transform interpolation technique. In
the simulations the signal source was situated at an angle

of 030  from the array axis. The beam pattern resulting
from a linear array of 38 elements having uniform
weights is shown in Figure 2. The beam pattern was
obtained from fractional delaying the input using the H.T.
interpolation. Theoretical beam pattern obtained from the
results of reference [5] is also shown in Figure 2. Figure 3
shows a contour plot of the range – bearing resolution
pattern of the received signal obtained from H.T.
interpolation.  The contour plot of Figure 3 agrees well
with the theoretical results provided in reference [5].

FIGURE 1: Matched Filter Output at a Single Sensor
(No noise)

Figures 4 to 6 are obtained using simulations with noisy
signals at the sensor inputs. For the simulations the signal
to ratio (SNR) was defined as

∫
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∞−
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S
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0

2
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 ,                        (15)

where η  is the noise power. In Figures 4-6 the SNR used

in the simulations are noted in dB values. Figures 4 and 5
show the beam pattern obtained from both H.T.

interpolation as well as from theoretical expressions, for
SNR given by dBSNR 0=  and dBSNR 30−= .  The beam
patterns in Figures 4 and 5 demonstrate the usefulness of
the H.T. interpolation technique even under very low SNR
conditions. The matched filter output in Figure 6 shows
the severity of the noise at dBSNR 30−= , where the
received signal was completely buried in the noise.
However, as seen by figure 5, the H.T. interpolation
technique of digital beamfoming performs very
satisfactorily, even in the presence of severe noise.

FIGURE 2: Directivity Patterns (dashed) Theoretical
Pattern from Reference [5]  (solid) Pattern Derived from

the Calculation of Fractional Time Delays using H.T.
Interpolation (No noise).

FIGURE 3: Range – Bearing Resolution Pattern
Obtained from the Calculation of Fractional Time Delays

using H.T. Interpolation (No noise).
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FIGURE 4: Directivity Patterns (dashed) Theoretical
Pattern from Reference [5]  (solid) Pattern Derived from

the Calculation of Fractional Time Delays using H.T.
Interpolation (SNR = 0dB).

FIGURE 5: Directivity Patterns (dashed) Theoretical
Pattern from Reference [5]  (solid) Pattern Derived from

the Calculation of Fractional Time Delays using H.T.
Interpolation (SNR = -30dB).

6. CONCLUSIONS
A technique for digital beamforming has been proposed in
the paper. The technique works via a non-linear signal
interpolation derived through the Hilbert transform. The
proposed technique is very efficient yet accurate and is
especially suitable for the application of beamforming
using wideband signals. Results from the proposed
method of digital beamforming is presented in the paper
using Gaussian LFM signals. The simulation has shown
that even in the presence of very severe noise the proposed

technique could be efficiently used for wideband digital
beamforming.

FIGURE 6: Matched Filter Output at a Single Sensor
(SNR  =  -30 dB)
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