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ABSTRACT In the time domain method, for high resolution
beamforming, it will be acessary to use fractional input
A signal interpolation technique based on the Hilbert fume delays. This is usually achieved using an

transform of a signal is proposed. This technique can belnterpolatlon and smoothing technigue via over-sampling

efficiently used for fractional time delay estimation. A Z;ﬁtggr:?pﬁ,t f;\?;aléT:rls’azogfﬁ\égﬁss d?ci)':atljol?; grjr:?:rcr):ii”y
useful application of the technique is demonstrated usin ' Paper, 9 9

examples of digital beamforming with wideband signals.gtechnlque that can be uged \.N'th Input sonar S|gn'al IS
Conventional wideband  signal beamforming is proposed. The beamforming is based on a non-linear

computationally intensive due to the calculation of interpolation technique based on the Hilbert transform of

fractional time delays. It is shown that the proposed the input sensor signal.

Hilbert transform based fractional time delay estimation

provides simple and computationally efficient, yet very 2. WIDEBAND PROCESSING IN THE

accurate results, and therefore, suitable for digital DELAY - SCALE DOMAIN

beamforming of wideband signals.
Consider a single discrete scatterer (target) situated at a
ranger, from the transmitter at time,= @nd moving

at a constant velocity towards the transmitter. Suppose
the transmitted burst is described lat). Then the

Wideband signals are usually used in active sonar systeMgscejved backstter from the single scatterer is given by,
for the detection of underwater targets in the presence of

noise and clutter. By using matched filtering techniques

on the received echo signal, these signals can provide 9(t) USa{(t—70)(
accurate estimates of the targets' ranges and velocities (or

more precisely, range rates) [1]. Wideband signals such as — (ot _ _ N .
the linear frequency modulated (LFM) signals are usedv_vhere ao = (c+v)/(c-v), and Tofzr‘)/(c v) is the
because, by increasing the bandwidth of the transmittediMe taken by the back-scattered signal to reach the sensor
signal, it is possible to increase the range resolution(round trip delay), and is the velocity of sound in the
without affecting the velocity resolution. In addition to Medium under observation [1]. The fact8y describes
velocity and range estimation, target bearing can also behe reflectivity of the scatterer at rangg (at t = 0). It
estimated using beamforming techniques used in arraysq includes the attenuation in the medium as well as the

processing [2]. However, beamforming with wideband .oeiver gain. Furthermore, it is assumed tigt is
signals is a computationally intensive task. This is .

because the efficient beamforming technique of complexmdependent of t|m_e. Note that,_ due to the scatterer
phase weight multiplication can not be used with motion, the transmitted pulsa(t) is compressed by a
wideband signals. The beamforming is thus achieved byfactor ofag .

delaying the sensor input signals. This is a time domain

technique. Alternatively, wideband beamforming could be For wideband signals, target detection is usually
obtained in the frequency domain via FFT processing. Butperformed by processing(t) via a matched filtering

this again is a computationally intensive method. approach in the delay-scal@,a) domain. The delay-

scale domain matched filter is described by the following
equation.

1. INTRODUCTION
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Suppose the wideband auto-ambiguity function of the (6)

transmitted signal is denoted by(t,a) , i.e.
where B(8) defines an array directivity pattern (beam
X(1,0) :JEIa(t)a* (a[t -T])dt, (3)  pattern) which is dependent on the wideband ambiguity
function of the transmitted signal. Evaluating equation (5)
at a =a, the following could be obtained.

M/2 _
PS(T,GO,B) = Hia WmR(ao[T —Tp+ mdilne]) .

then equation (2) can be expressed as,

ple.a) =P (el =Tl 1) - @ o [ o
0 0

The above can be considered as a range-bearing resolution

In the delay-scale planep(r,a) peaks atr =7, and pattern. In a manner similar to the ambiguity function,
a=a, which can be used to obtain the range andthefunctlon in equation (7) describes the achievable range

locity of th h L h and bearing resolutions of the sonar system. Note that the
velocity 0 t_e target. _Notet (T, a=1) is same as_t € evaluation of the beam pattern and the range-bearing
autocorrelation function ofa(t). The autocorrelation  resolution pattern needs the implementation of equations

function of a(t) is denoted in the paper Bg) . (6) and (7) which requires delaying of the input signal by
a fraction of the sampling period. In this paper the time
3. BEAMFORMING AND RANGE - delays require to evaluate equations (6) and (7) are

obtained via a non-linear technique. The technique relies

BEARING RESOLUTION PATTERN on the Hilbert transform of the input received signal.

Consider a linear sonar array ¢M +1) sensors with 4. EVALUATING A SIGNAL AT
uniform spacing d. The array weighting coefficient FRACTIONAL DELAYS USING THE
corresponding to then™ element is denoted bw,, and HILBERT TRANSEORM

the ranger, of the target is considered to be measured
from the centre of the array. Suppose a plane wave signalet the sequencex(k), kOO has been obtained by

source arrives at an ang#e measured with respect of the uniformly sampling a real signak(t)| __ at sampling
normal of the array axis and the output of the beamformer t=kT

g(t), is processed via a delay-scgler) domain
matched filter as described in equation (2).

intervals of T. Consider the problem of estimating the
signal valuex(t) using the sequencek), at some time

given byt = kT + €T whereO<¢ < 1 Suppose(k)is the

Consider the beamformer with no pre-steering delays.2nalytic signal associated wik(k), i.e.

Equation (4) can now be extended as follows. )
(k) = x(k) + jH{x(K)} , 8

M/2 .
ps(1,0,0) = % Hi rn)((cro[r—ro+mdsme],i) where H{.} denotes the Hilbert transform (H.T.) of a
m== /2% ¢ do signal. Using equation (8) the amplitude and phase of the
(5) signal can also be obtained as,

Evaluating the love egation at 7 =7, and a =aq,
provides the signal energy of the detection process, i.e. AK) =[zk)| © @(k) =argl(k)) - 9)

The following points are noted:



1. In most of the applications in sonar the Hilbert could be accurately estimated (within an errorl6f°)

transform of the input signal is available at the ysing the described Hilbert transform interpolation
receiver without the need of atidnal processing.  technique, over a large range of the value
This is because of the quadrature demodulation at the

receiver.

Value of Error from Error from

. . d H.T. Linear
2. The functionsA(k) and ¢(k) are both slow varying in Interpolation | Interpolation

most of the signals used in active sonar. This is 0.092 72403x10°® | 4.3975
because the matched filtering operation in equation

. . . 0.320 6 | 4.3975
(2) results in slow varying signals f@(7,q) . 7.2402x10
0.900 7.2413x10°° | 4.3989
As, AKK) and ¢(k) are slow varying it is possible to 1.100 7.2370x107% | 4.3931
linearly interpolate these signals to obtain an estimate of 3.900 10.454x10°% | 3.9211
the analytic signal at time=kT +£T . This is obtained 13.700 11.990x107° | 4.9335
using the amplitude and phase atk+&) which is
derived using the following relations: TABLE 1: Comparison of Hilbert Transform

Interpolation with Linear Interpolation.
|z(k + s)| =eAk+D) +(1-g)AK) ;
arg(k +£)) = ep(k +1) + (1— £)p(K) . (10) 5. GAUSSIAN ENVELOPED LINEAR
FREQUENCY MODULATED SIGNALS
X(KT +£T) then results as the real partagk +¢) .

Table 1 shows the results of an experiment performed tol "€ performance of the proposed digital beamforming
determine the accuracy of the proposed Hilbert transformmethod, which uses Hilbert transform interpolation
interpolation technique. The following Linear Frequency t€chnique, is demonstrated using Gaussian LFM (G-LFM)

modulated signal having a Gaussian shaped envelope wadgnals. GLFM signals have been considered here as it
used in the experiment. has been shown in [3, 4] that they can provide desirable

directivity patterns for target bearing estimation.
Furthermore, exact closed form expressions for G-LFM
signal beam and range-bearing resolution patterns have
been derived in [5] which could be used for verifying the
with f.=0.24 and 3=0.12. The signal duration was performance of the proposed technique.

selected as-1<t <+ Xeconds. At first a sequengé)

was obtained by sampling the signal in equation (11) by aThe assumed G-LFM sonar transmission signals is given
1Hz sampling frequency. Note that the signal in equation by,

(11) occupies the full Nyquist bandwidtht0.5Hz.

Suppose another sequence is defined as the values a(t) —e W cosQrfCHnﬁtz) , (13)
obtained by sampling the signs(t) at a frequency ofl
Hz, i.e.

x(t) = €% cos@ri t + mft?) (11)

where f.is the centre frequency anl is the frequency

X4 (k) :X(t)|t=d ' (12) sweep rate. The parametgr controls the Gaussian
For d010] we can estimate the sequencgk frgm the  ghaped amplitude of the transmitted signal. The auto-
sequencex(k) using fractional delay estimation. The correlation of the G-LFM signal in equation (13) is given
exact value ofxy(k )can also be derived using equation by

(11). Therefore, it is possible to calculate estimation error, ) )

and thus evaluate various fractional delay sampling R(r) = E e_gTZ/sz cos@rf.T) E:71 +0 (14)
algorithms using simulation. Table 1 shows the 0 ¢ ’ a2
performance results of the Hilbert transform interpolation
in calculating the fractionally delayed sample values. For
comparison purposes, results from a Linear Interpolation ) L _ )
algorithm is also shown in Table 1. Results from Table 1€ result of equation (14) it is possible to derive
demonstrate that the fractionally sampled sequence values

where E, is the energy of the transmitted signal. Using



theoretical expressions for the beam pattern and range interpolation as well as from theoretical expressions, for
bearing resolution pattern of G-LFM signals [5]. SNRgiven by SNR=0dB and SNR=-30dB. The beam
patterns in Figures 4 and 5 demonstrate the usefulness of
Consider the following G-LFM signal simulation the H.T. interpolation technigue even under very 8MR
example. The signal parameters were selected agonditions. The matched filter output in Figure 6 shows
f. =200Hz, B =112Hz/s,y=m/2 with a sampling the severity of the noise aBNR=-30dB, where the
frequency of 1000 Hz No noise was used in the received signal was completely buried in the noise.
simulation. Figure 1 shows the matched filter output of However, as seen by figure 5, the H.T. interpolation
the received signal at one sensor. Note thamtatched ~ technique of digital beamfoming performs very
filter output has a smooth amplitude which justifies the satisfactorily, even in the presence of severe noise.
use of the Hilbert transform interpolation technique. In

the simulations the signal source was situated at an anc 0 —r—T——
of 30° from the array axis. The beam pattern resulting : Té — /\)
from a linear array of38 elements having uniform "201"| ~~Theoretical Curve VIR
weights is shown in Figure 2. The beam pattern wa: I
obtained from fractional delaying the input using the H.T. & V !
interpolation. Theoretical beam pattern obtained from the g o
results of reference [5] is also shown in Figure 2. Figure : & ( \f
shows a contour plot of the range — bearing resolutiol £ g0l [ /\ m\ v
pattern of the eceived signal dhined from H.T. g \ J V \ V ‘
interpolation. The contour plot of Figure 3 agrees well D_lo A L é
with the theoretical results provided in reference [5]. | | V A I BRI
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Figures 4 to 6 are obtained using simulations with noisy |
signals at the sensor inputs. For the simulations the signal -60f
to ratio SNR was defined as pu

10 . L L L L L L . L
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ST
SNR=2x Iaz(t)dt : (15) Delay (ms)
agl  J,

wheren is the noise power. In Figures 4-6 tBHRused . .
n P g FIGURE 3: Range — Bearing Resolution Pattern

in the simulations are noted @ values. Figures 4 and 5 5yained from the Calculation of Fractional Time Delays
show the beam pattern obtained from both H.T. using H.T. Interpolation (No noise).
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FIGURE 4: Directivity Patterns (dashed) Theoretical
Pattern from Reference [5] (solid) Pattern Derived from
the Calculation of Fractional Time Delays using H.T.
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6. CONCLUSIONS

A technique for digital beamforming has been proposed in
the paper. The technique works via a non-linear signal
interpolation derived through the Hilbert transform. The

technique could be efficiently used for wideband digital
beamforming.
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proposed technique is very efficient yet accurate and is[5]

especially suitable for the application of beamforming
Results from the proposed
method of digital beamforming is presented in the paper
using Gaussian LFM signals. The simulation has shown

using wideband signals.

that even in the presence of very severe noise the proposed

(SNR = -30 dB
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