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Abstract

This paper presents an unsupervised image segmenta-
tion method based on Markov chains. It is applied to
multispectral SPOT satellite images to recover nauti-
cal space charts. These images involve three spectral
bands. The conditional distribution for each segmen-
tation class is supposed to be Gaussian. The proposed
method takes into account the correlation between the
three spectral bands, and adresses the determination of
the number of classes. Classification results on synthetic
and real examples demonstrate the efficiency of the pro-
posed method.

Keywords : Markov chain, mullispectral image seg-
mentation, spectral correlation, estimation of parame-
ters.

1 Introduction

This paper is concerned with the segmentation of mul-
tispectral satellite images in an unsupervised way. Con-
sidered data are supplied by SPOT satellite which ob-
serves the earth in three spectral bands : XS1 channel
covering 0.50 to 0.59 pm (green), XS2 channel covering
0.61 to 0.68 um (red) and XS3 channel covering 0.79 to
0.89 um (near infrared).

By combining these channels, colour composite images
can be produced. In the sequel, the three considered
channels will be denoted R,G,B standing for red, green
and blue. Satellite sensors measure the radiometry, i.e.,
the intensity of the radiations reflected by the ground or
by the sea through the water layers. Spatial resolution
is 20 by 20 meters.

Images we are interested in cover Pacific atolls. The
goal of the segmentation step is to assign to each pixel
a class label. In our application, these labels correspond
to: cloud or cloud shadow, sea, ground. Then, in a
future work, sea areas will have to be segmented ac-
cording to the water depth, for production of nautical
charts[6][9]. The motivation of directly exploiting these
images is to reduce the cost in comparison with expen-
sive hydrographic campaigns in Pacific Ocean. Further-

more, the accuracy and updating of nautical charts are
especially important for navigation.

This paper is structured as follows. Section 2 de-
scribes the monospectral segmentation method based on
Markov chains. Section 3 deals with the multispectral
analysis. Results obtained on synthetic and real images
are reported in section 4. Section 5 contains concluding.

2 Monospectral segmentation

based on Markov chains

The interest of Markov chain methods[3][4] for im-
age segmentation compared to 2D Markov field
models[2][5][7] is that, being based on 1D modeling, they
result in lower computing cost. To apply such a method,
we need to transform a two dimensional set of pixels into
a one dimensional set S. This transformation is realized
by a Hilbert-Peano scan[8]. The performed segmenta-
tion then results in a 1D map, which is transformed into
a 2D image using an inverse Hilbert-Peano scan.

2.1 Notations

We consider two sets of random variables: X = (X,),,.q >
the labels and Y = (Y,), g, the observed data. X,
takes its value in a finite set of 1 = {wy,...,wg} corre-
sponding to K classes. n represents the position along
the chain : n=1,...; N. We assume the noise in each
spectral band to be Gaussian (A). We suppose that the
X is a first order Markov chain, i.e.

P(Xpi1| X X1) = P(Xpi1]Xn)

(1)

We introduce the initial distributions
T = P[X1 = w, and the
Q5 = P [Xn+1 = wlen = wi] .
At each iteration, we have to estimate simultaneously
the initial distribution, the transition matrix and the
Gaussian distributions P (Y| X = w;) =N (i;,0;).

We introduce the forward and backward probabilities :

(2)

transition  matrix



P [Yn+1 = yn+1~~~YN = leXn = wi]

Gali) =

These probabilities can be calculated by backward and
forward recursions[1]. We have the relation:

£, () = P[X,=wi|Y1=11..Yn =yn]
= oy (1) B,(8) (3)

We can find in the literature another definition of the
backward and forward probabilites|[1], but it suffers from
underflow problem.

The a posteriori joint probability has also to be con-
sidered.:

\Iln(Zm?) - P[Xn = wi7Xn+1 = w]|Y - y]

(4)
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These probabilities allow us to update initial distrib-
utions, and transition matrix[4] using an EM procedure.

m = gl (5)
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Differents methods could be exploited to perform the
segmentation step based on this modeling. We will de-
scribe our aproach.

2.2 Description of the algorithm

We use the ICE Gauss algorithm[4], based on Iter-
ative Conditional Estimation. At the beginning, an
estimation of the following parameters is required:

OO = {7, aij, 1,04, (5,§) € {1,..., K}}.
The different substeps of iteration [g] are given below:

1. Compute a,, (i) and 3, (i) using ®l7~ 1] parameter
value.

2. Compute ¥, (7, ) with equation (4).
3. Update a;; and 7; using ¥,(7,7) (equation (5)).

4. Generate z a realization of X|Y = y using the a
posteriori transition matrix (¢f paragraph 2.3).

5. Update p,; et 0; with mean and variance estima-
tors, applied on the area where X,, = w;. We use
8 (2n,3) = 1 if 2, = w;, and 0 otherwise.

~ Zi;l ynﬁ(zn,i)
B Zijzl 8(zn,1)

7 = SN (vn1) @)
Zijzl 8(zn 1)

After a predetermined number of iterations, the seg-

PYoi1 = Yne1- YN = Y|V = y1.. Y0 = ¥ mentation is performed by maximizing local posterior

marginals (MPM estimation):

b = ars ey, P =l =0 Yy =0n)
= arg max |a, (1) 5,(0)] (7)
2.3 Simulation of X|Y =y

In order to draw samples from P (X|Y =) in a recur-
sive way, we rely on posterior transition probabilities

P [Xn+1|Xn7Y =y (8)
=P [X”H‘llXTHYTH-l = Yn+1, 7YN - yN]

mi P [Yi] X, = wi] 8 (3)
S mP Vil X = wi] By (1)
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x1 is drawn according to P [X1|Y], then ;-1 is drawn
according to P [Xpt1]|Xn,Ynt1 = YUnt1, - YN = Yn]
where z,, comes from previous sampling.

(10)

2.4 Number of classes

To perform an unsupervised segmentation, we need to
determine the number of classes. We proposed to start
with an upper bound for this number and to reduce it
afterwards by merging classes whose distributions are
too close.

We have considered the following criterion to merge
classes 7 and j:

(u) iy — ] < T (11)

0,035

where 1, and o; stand, respectively, for the mean and the
standard deviation of class 7. Threshold T is empirically
set.

We have described the ICE Gauss algorithm in the
monospectral case. Now, we introduce an extension of
this method to multispectral images.

3 Multispectral
based on Markov chains

segmentation

The observed image is still represented by the random
field Y = (Y,,), but now Y, = (Y, V{9 v;{*¥)), where
R, G and B refer to the three channels available in SPOT



data. The new expression of the conditional law is given
by :

P (Yo =Xy =w)
1 1
(2m)*/* \/det

with M; standing for the mean vector of class ¢ and X;
representing the 3 x 3 covariance matrix:

t
Moo= |y u® (13)
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One of the contributions of the proposed multispec-
tral method resides in the fact that for each class, inter-
channel correlations are estimated.

Thus, in the fifth step of the algorithm, the correlation
coeflicients are upded as follow:

(14)
1
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where n; is the number of pixels in class 7, and 5; is the
set of such pixels. (C1, Cs) represents a pair of channels.

Moreover, in the fourth step of the algorithm, the label
is selected in a probabilistic way with respect to the
a posteriori transition matrix, using the tridimensional
Gaussian law.

4 Results

4.1 Synthetic images

This unsupervised multispectral image segmentation has
been first performed on synthetic images (Figure 1),
where the ground truth is known), in order to validate
the method.

The classification algorithm provides a perfect seg-
mented map, and the estimation of parameters (includ-
ing the correlation coefficients) is accurate (Table 1).

The size of the original image is 64 by 64 pixels. We
start the algorithm with 10 classes, and the final re-
sult involing 5 classes is obtained after approximately
15 seconds of computing time (Workstation 43P IBM
120Mhz). Threshold T" was set to 2.

(12)
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Figure 1: a) Original color image; b) Channel R of image
la; ¢) Channel G of image 1a; d) Channel B of image
la; €) Segmented image {) Ground truth

Parameters Class Class Class Class Class
1 2 3 4 5
= 210.4 49.9 100.1 40.0 169.8
H 210 50 100 40 170
o 109.3 60.4 99.9 90.1 198.1
H 110 60 100 90 200
- 208.6 149.3 20.1 09.2 68.5
H 210 150 30 100 70
e 11.0 10.0 10.8 5.0 8.9
12 10 10 5 20
G 16.4 1.1 19.2 9.0 14.0
18 11 20 9 15
5 10.6 2.1 7.2 14.9 8.6
10 12 7 15 9
s 0.31 0.22 20.05 0.16 0.44
P 0.4 0.2 0 0.1 0.5
B 0.44 0.31 ~0.60 0.48 0.53
P 0.3 0.4 0.5 0.5 0.6
on 0.12 0.80 0.66 0.68 0.66
P 0.2 0.8 0.7 0.7 0.7

Table 1: Estimated (first line) and true parameters (sec-
ond line) of the synthetic image

In Figure 1, we can note that , if only one single band
is considered, it is difficult to distinguish the five classes.

This demonstrates the interest of taking into account
simultaneously the information from the three bands,
which results in a perfect classification.




4.2 SPOT satellite images

We have applied our method to SPOT images, in the
context of a nautical space chart application. The fol-
lowing experimental results (Figure 2) have been ob-
tained with a multispectral SPOT image of 256 by 256
pixels. We can notice that in the original image (Figure
2a) waves disturb the radiometry. The initial number of
classes was set to 8, and the final number is 6.

The multispectral algorithm allows us to exploit in an
appropriate way the whole available information within
the same segmentation process.

In the monospectral case, it is easy to initialize the
conditional laws.We can, for example, choose for each
class the standard deviation ¢ of the whole image. Then,
we compute the mean p of the whole image. The means
of each class are:

K

o K
=utk—k=1-—,..., —
/’L’L /’L 2 27 72

(k is supposed to be even)

In the multispectral case, we have to define three ini-
tial means for each class. In our method, they are chosen
randomly, therefore the initial number of classes has to
be high. The initial correlation coefficients are supposed
to be equal to zero (i.e. the three Gaussian laws of a class
are independent), and the initial values of standard de-
viations are still set great enough.

The drawback of a Markov chain model is to reduce
the neighbourhood size of a pixel to two neighbours.
Nevertheless, experimental results obtained prove that
the tradeofl between speed and accuracy is better with
this method (Table 1).

5 Conclusion

This paper has addressed the problem of unsupervised
multispectral image segmentation using a Markov chain
model. The results obtained both on synthetic and real
images are quite promising.

This modeling approach based on 1D multispectral
Markov chain leads to low computational time in com-
parison with usual methods based on 2D Markov fields
requiring simulation by Gibbs sampler, and to an effi-
cient solution for model parameters. The contributions
of this work can be summarized as follows:

e we have introduce a mean to evaluate the
The wunsupervised image
segmentation only require an a priori upper
bound for this number.

number of classes.

e the method is adapted to multisensor images.
The proposed algorithm takes into account
the correlation coefficients between the differ-
ent channels within each class, which are esti-
mated in an iterative way.

Figure 2: a) Original SPOT image b) Segmented image
(color) ¢) Segmented image (grey level)



The accuracy of this method has been demonstrated
on synthetic images (Figure 1 and Table 1), and con-
vincing experiments on real images have been carried
out (Figure 2).
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