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ABSTRACT

A problem of a blind stochastic SNR estimator and a prin-
ciple of SNR estimation combining a blind estimator and
decision-aided estimator are presented. Signal and noise
can be detected from the received signal by a decision de-
pending on a decision threshold that is made available by
using the second and fourth-order moments of the received
signal. Subsequently, the SNR is computed from the de-
tected signal and the detected noise. The bias of SNR esti-
mation (based on detection errors) is removed by applying
analytically bias correction.

1. INTRODUCTION

The signal-to-noise ratio (SNR)at the receiver’s side of a
communication link is an important measure for the qual-
ity of the communication channel. The SNR is obviously
influenced by two unknown power measures, the received
signalpowerS of the signal emitted by the sender and at-
tenuated by the channel, and the received noise powerN
due to thermal noise, crosstalk from neighboured channels,
etc. In general, both are unknown and added to thetotal re-
ceived powerS +N of the received superposition of signal
and noise, which can actually be observed.
The task of an SNR estimator is to analyze the superim-
posed received signal and todeterminewhich part of the
power is due to the transmitted signal and which part is due
to noise. We want to distinguish two basically different ap-
proaches:

Data-aided Estimation If digital data are transmitted, the
receiver tries to reconstruct the transmitted signal by means
of the decoded data, and interpret the difference between
(an appropriately scaled version of) the received signal and
the reconstructed signal as noise.
The major drawback of this method is, of course, that the
decoded data become less reliable with decreasing SNR,
and thus the estimate exhibits a random error due to decod-
ing errors. This effect is obviously especially serious in a
low SNR environment.
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Figure 1: Data-aided SNR estimation (top) and blind SNR
estimation (bottom). The data-aided SNR estimation relies
on the datasent(theory), but actually uses the datadetected
(practice).

Blind Estimation methods do not use decoded data. In-
stead, they use data-independent properties of the received
signal that bear information about the data and the noise
components. Due to the abstraction from the actual data
being transmitted these properties usually are of statistical
nature, such as higher order moments or cumulants.

Reverting the above argument, one advantage of blind
estimators is the robustness against erroneously decoded
data, making them especially well-suited for low-SNR
channels. Another useful property of blind estimators
is that they work for digital messages (data)and analog
messages (e.g. analogously transmitted audio), whereas
there’s no way to obtain a ‘decoded’ version of an analog
signal for a data-aided estimator. Figure 1 illustrates the
differences between both approaches.

2. STATEMENT OF THE PROBLEM

Signalx(t) and noisen(t) are modelled as stochastic pro-
cesses with probability density functions (p.d.f.)fx(x) and
fn(n), resp. The received signaly(t) is a superposition of



signal and noise:

y(t) = x(t) + n(t) (1)

We assume thatx(t) andn(t) are i.i.d. stochastic processes,
and mutually independent. This is valid e.g. for Nyquist
systems with sampling after a matched filter and additive
white Gaussian noise.
We further assume that signal’s and noise’s p.d.f.s fulfill the
symmetry conditions

fx(x) = fx(�x); fn(n) = fn(�n); (2)

and that not both, signal and noise, are Gaussian.
If x(t) andy(t) are complex valued stochastic processes,
they are described by their joint p.d.f.s of real and imagi-
nary part.
For the rest of the paper, we restrict our analysis toM -PAM
signalling schemes. However, extension of the proposed al-
gorithms to complex AM/PM schemes is straight forward.
For sake of simplicity, noise is assumed to be Gaussian. A
discrete-time AWGN channel is considered.

3. THE CRAMR-RAO BOUND

Given a stochastic process with p.d.f.fx(xj�) dependent on
a parameter�, the Cramr-Rao Bound (CRB) [1] gives us a
lower bound for the variancevarf�̂g of an estimation for�:

varf�̂g � 1
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whereEf�g denotes the expected value andn is the number
of observed samples.
Given anM -PAM transmitter with transmitted powerS and
p.d.f.
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and Gaussian noise with varianceN we obtain for the re-
ceived p.d.f.
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Substitutingy0 = 1p
S
y and the SNR� = S

N
in (5) we

obtain:
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Figure 2 and 6 also depict numerical results for the equa-
tions (3) and (6) forM 2 f2; 4; 8g and an observation size
of n = 512. For larger SNR� the CRB is almost propor-
tional to�2. For this reason, variances of estimates will be
normalized to�2 in the sequel. The normalized CRB shows
a prominent maximum at low SNR.

4. THE BLIND STOCHASTIC SNR ESTIMATION

4.1. Algorithm

Using the second and fourth-order moments the SNR can be
estimated by observing the noisy signal if only the shapes
of signal’s and noise’s p.d.f.s are known [2]. The estimate�̂
of the received SNR is computed by [3]:

�̂ =
�̂

1� �̂
=

q
Ĝy=Gx

1�
q
Ĝy=Gx

(7)

where

� �̂ denotes the estimated signal-to-noise ratioS=N ,

� �̂ is the estimated signal-to-total ratioS=(S +N),

� Gx denotes the transmitted Gauss-unlikeness

Gx = mx;4=m
2
x;2 � 3;

� Ĝy denotes the estimated received Gauss-unlikeness.

Additionally, this algorithm can be seen in [4].

4.2. Analysis

This blind stochastic SNR estimation was simulated with
the AWGN channel model, and a measure of efficiency of
the SNR estimator with the CRB was used. The CRB for the
blind SNR estimation was computed numerically with (3)
and (6). Figure 2 shows the results of the simulated blind
stochastical SNR estimator for 2-PAM (using 100 simula-
tion runs with 500 packets, each containing 512 samples)
compared to the this CRB. The result approachs the theoret-
ical bound for SNR estimation. It turns out that for 2-PAM
the blind stochastic estimator is efficient with respect to the
CRB.

4.3. Problem of Algorithm

The blind stochastic estimator has severe disadvantages
when it is used for bandwidth-efficient modulation schemes.
The estimation remains stable as long as�̂ is equal or
greater than 0 but smaller than 1. Estimation forM -PAM,
M > 2, can obtain values for̂� close to the pole in (7),
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Figure 2: Mean normalized variancevarf�̂g=�2 of the sim-
ulated blind stochastical SNR estimator for 2-PAM and
CRB ofvarf�̂g=�2

causing instability and exploding variance of the estimated
�̂. However, it has to be noted that whilevarf�̂g explodes
due to the pole,varf�̂g remains stable.
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Figure 3: Mean standard deviation of the simulated esti-
mated signal-to-total ratio using blind stochastical SNR es-
timator with 512 and 1024 samples for 4-PAM and their
correspondingCRBs ofstdf�̂g

In fig. 3 the mean standard deviation of simulated estimated
signal-to-total ratio using blind stochastical SNR estimator
(using 100 simulation runs with 500 packets, each contain-
ing 512 and 1024 samples) for 4-PAM are compared to the
correspondingCRBs. The CRB of1024 samples is lower
than the CRB of 512 samples. If the actual SNR� and the
actual signal-to-total ratio� increase, the standard deviation
of estimated̂� will approach the CRB. For 8-PAM the prob-

lem is similar. This SNR estimator is not well-suited for 4
and 8-PAM, but it can be used to estimate the signal-to-total
ratio.

5. A COMBINED STOCHASTIC/DECISION-AIDED
ESTIMATOR

5.1. Principle of Operation

Revesting the last section, this leads to an estimator using
blind stochastical estimation of̂�, and then computing a
decision-aided estimation for̂�. The signal-to-total ratio�
is used to adjust the decision thresholdd of the decision-
aided estimator, for 4-PAM:

d =

r
� �my;2

5
(8)

wheremy;2 denotes second-order moment of the received
signal, and5 is simply the normalized power of 4-PAM.
In the sequel, we usex� to denote the detected signal, and
n� for the detected noise (i.e.n� = y � x�). We can find
the signal powerSx� from the detected signalx�, and the
noise powerN� from the detected noisen�. The estimated
SNR �� is provided by relation ofSx� andN�. Due to
the detection errors, the estimated�� is biased. However,
this bias can easily be removed by applying an analytically
computed nonlinear characteristic in the section 5.2. Fig. 4
illustrates the principle of this operation.
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Figure 4: Combined Stochastic/Decision-aided SNR Esti-
mator for 4- and 8-PAM



5.2. Bias Removal

The characteristic of the estimated SNR�� is analytically
computed in [5]. The received p.d.f. for 4-PAM can be
given by (5), therefore the signal powerSx� for 4-PAM
is obtained by using the received p.d.f. and the decision
thresholdd.

Sx�(S;N) = (�3d)2
�2dZ
�1

fy(y) dy +

+ (�1d)2
0Z

�2d

fy(y) dy +

+ (1d)2
2dZ
0

fy(y) dy +

+ (3d)2
+1Z
2d

fy(y) dy (9)

Additionally, the noise powerN� for 4-PAM is obtained by
using the received pdf and the decision thresholdd.

N�(n�jS;N) = 2[
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0
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+
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n�2fy(n� + 1d) dn� +

+
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0

n�2fy(n� � 1d) dn� +

+

1dZ
0

n�2fy(n� � 3d) dn� ] (10)

The analytically estimated SNR�� for 4-PAM is now com-
puted as the relation ofSx� in (9) andN� in (10). The
analytically estimated SNR�� for 8-PAM can be computed
in the same way as for 4-PAM.
Figure 5 depicts curves of actual SNR� for 4- and 8-PAM
depending on the analytically estimated SNR��. The ana-
lytically estimated SNR�� for 8-PAM is only greater than
the actual SNR�, whereas the analytically estimated SNR
�� for 4-PAM is equal to the actual SNR�, when the actual
SNR� is greater than60. These curves are used to remove
the bias of the estimated SNR��.
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Figure 5: Bias correction to correcting the estimated SNR
�� for 4- and 8-PAM

5.3. Results

Figure 6 shows the results of the simulated combined
stochastic/decision-aided SNR estimator for 4- and 8-PAM
(using 100 simulation runs with 500 packets, each con-
taining 512 samples) with bias correction compared to the
CRB. Both variancesvarf~��g=�2 of simulation remain sta-
ble, and they have similar characteristics to the CRBs.
The varf~��g=�2 of 4-PAM is closer its CRB than the
varf~��g=�2 of 8-PAM. Figure 6 also clarifies that the com-
bined stochastic/decision-aided SNR estimator has nearly
the same efficiency for 4-PAM as for 8-PAM with respect to
the CRB.

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

linear actual SNR

V
ar

ia
nc

e 
no

rm
al

iz
ed

 to
 a

ct
ua

l S
N

R

mean var{ρ
8PAM
~* } /ρ2

 

CRB
8PAM

 /ρ2
 

mean var{ρ
4PAM
~* } /ρ2

 

CRB
4PAM

 /ρ2
 

Figure 6: Mean normalized variancesvarf~��g=�2 of the
simulated combined stochastic/decision-aided SNR estima-
tor for 4- and 8-PAM and their correspondingCRBs of
varf�̂g=�2



6. CONCLUSION

The blind stochastic SNR estimator has a good efficiency in
the sense of the CRB for 2-PAM. However, it is not very
well-suited for 4-PAM and higher PAM or QAM modula-
tion schemes, because estimation forM -PAM, M > 2,
at high actual SNR can obtain values for�̂ close to the
pole, causing instability and exploding variance of the es-
timated �̂. If detected data are available or can be made
available, the combined stochastic/decision-aided SNR es-
timator solves this problem in a near-optimum manner.
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