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ABSTRACT

Robust detection of monotonic trend of a data sequence,
when the data is subject to gross errors, is investigated. The
method involves detection of the outliers by using the statis-
tics of the available data and eliminating or estimating them
for better line fitting where the slope of the fitted line indi-
cates the trend of the sequence. Examples demonstrate the
performance of the method via Monte Carlo simulations.

1. INTRODUCTION

In many practical environments, noise in the acquired data
contains a small amplitude component representing random
measurement noise and a large amplitude component rep-
resenting large but infrequent (gross) measurement errors.
This kind of disturbance in the data is commonly referred
to as impulsive noise [1]. In statistical literature, the data
points having the first component are calledinliersand those
having the second component are calledoutliers.

In this study, we investigate the problem of detecting
monotonic trend of a data sequence which contains outliers.
The data, for instance, could be the output of a diagnos-
tic instrument which is required to periodically take small
number of data samples and flag a trend and which is sub-
ject to occasional acquisition error. Gross errors may also
be the result of preprocessing the raw data which has not
been subject to large errors at the time of acquisition.

The problem is formulated from a hypothesis testing
viewpoint using the likelihood ratio test between the con-
stant trend and one of either decreasing or increasing trend,
whichever is physically possible. Constant trend is indi-
cated by the mean of the data while the slope of a line fitted
to the data points in least squares sense gives us the trend of
the data sequence.

Since least squares approximation is sensitive to out-
liers, this formulation is not robust and it can degrade catas-
trophically unless outliers are detected and either censored

or replaced with corresponding inlier estimates. We present
herein an algorithm for the robust solution of the above
problem in the absence of any knowledge of the error statis-
tics except that the small error component is modeled as
a Gaussian distribution with unknown variance. Weak as-
sumptions are made on the gross error statistics, namely that
the probability of the gross error contamination is smaller
than one third.

In the next section we present the problem formulation.
Difficulties with the solution in case of outliers is addressed
and robust statistics are proposed in Section 3. The robust-
ness of the algorithm is demonstrated by examples in Sec-
tion 4.1. Comparison of the Monte Carlo simulations with
theoretical results obtained using a simplified model is pre-
sented in Section 4.2.

2. PROBLEM FORMULATION

Consider a set of acquired data valuesfyigMi=1 with corre-
sponding coordinatesfxigMi=1. Assume the trend sought is
a decreasing trend. In that case, we can formulate our trend
detection problem as the binary hypothesis testing problem
of choosing between a constant trend and a decreasing lin-
ear trend. Even though a trend may not be a linear one, a
decreasing trend would be better fitted by a negative slope
line than by a constant and this is often a good first order
approximation. We can therefore write our problem as fol-
lows: Let the two hypotheses be

H0 : yi = c+ ni

H1 : yi = axi + b+ ni; a < 0; 8i 2 I ; (1)

whereI is the index setf1; 2; : : : ;Mg. H0 is the hypoth-
esis for no trend (i.e. constant trend,c) andH1 is the hy-
pothesis for decreasing trend (i.e linear trend,ax+ b) of the
data sequence. Noiseni is a sample of a random variableN
which is a mixture of distributions whose probability den-



sity function can be written as:

fN (t) = plfNl
(t) + pcfNc

(t) + prfNr
(t) (2)

whereNl, Nc andNr, stand for random variables with left,
center and right distributions,fNl

, fNc
and fNr

respec-
tively. The left and right distributions, which have means
�l � 0 and0 � �r and variances�2l and�2r , model the
negative and positive gross errors due to outliers. The cen-
ter distribution models the small error component due to in-
liers. It is assumed to be a zero-mean Gaussian distribution
with variance�2c . A sample is drawn from left or right dis-
tributions with prior probabilitiespl or pr, sum of which,
(1 � pc), is smaller than one third corresponding to the as-
sumption that the number of outliers in the data set is not
more than about one third of the total number of data points.

Let us define

ym = (yk1 ; yk2 ; : : : ; ykm) (3)

xm = (xk1 ; xk2 ; : : : ; xkm) (4)

whereIm = fk1; k2; : : : ; kmg is a subset of the index setI.
Note thatm � M because, as we shall see in the next sec-
tion, we may not use all of the available data points for line
fitting but rather use the ones that are identified as inliers
corresponding toIm. We can write the generalized likeli-
hood ratio test (GLRT) statistics under the Gaussian noise
assumption (for inliers only) as

L(xm;ym) =

Pm

i=1(yki � �y)2Pm

i=1(yki � ŷki)
2
: (5)

The numerator of this ratio is the sum of the squared er-
ror between the data pointsfykigmi=1 and the mean of these
points

�y =
1

m

mX
i=1

yki : (6)

The denominator is the sum of the squared error between
the data points and the line fitted to these points which is
given by

ŷki = âxki + b̂; â � 0; 1 � i � m (7)

whereâ andb̂ are obtained by least squares estimation. The
condition onâ ensures that only a negative slope is fitted.
However, this condition is not imposed as a constraint in
least squares estimation but rather taken care of by the de-
tection rule. When the slope is of opposite sign (positive,
if we assume the only possible trend other than a constant
one is a decreasing trend),H0 is decided. The reason is that
when the actual trend is constant, falsely fitting a positive
slope line is more probable than fitting a positive slope line
to an actual decreasing trend. The likelihood ratio is sim-
ply the measure of how well our approximation is fitted to a

constant or a line with slope and offset given as in (7). Then
the decision rule is

�(xm;ym) =

�
0 if L(xm;ym) � �
1 if L(xm;ym) > �

(8)

where threshold� can be found given a false alarm rate
[2]. Note that this has the desirable constant false alarm
rate (CFAR) property.

3. ROBUST STATISTICS

In the above procedure, least-squares method is used for line
fitting in (7). Least-squares method finds an approximate
line that minimizes thel2 norm, that is,

[â b̂] = argmin
a; b

mX
i=1

(yki � axki � b)2 : (9)

When the error components are independent, identically
Gaussian distributed with zero mean, least square estima-
tor is the same as maximum likelihood estimator [3]. How-
ever, if the data contains outliers, least square estimate is no
longer preferable because large residues dominate the sum
of the squares, resulting in unreliable estimates. In order to
eliminate the effect of outliers prior to line fitting we intro-
duce a novelediting filter for censoring the outliers in the
data sequence and compare its performance with the more
standard median filter which substitutes for the outliers.

3.1. Editing Filter

The editing filter, as its name suggests, edits the data se-
quence and eliminates the outliers from the sequence. To
decide which data points are outliers, first a line is fitted to
data points in least absolute value (l1) sense which is given
by

~yi = ~axi +~b; ~a � 0; 1 � i � M ; (10)

where~a and~b are the minimizer of the total absolute error
(l1 norm), that is,

[~a ~b] = argmin
a; b

MX
i=1

jyi � axi � bj : (11)

Least absolute value method is not as sensitive to outliers
as the least squares method is and it is known as a robust
estimator in statistics [4, 5]. Intuitively, since thel2 sum
contains squares of the residues, the sum is dominated by
the sum of square of the gross errors. This is not so se-
vere in the case ofl1 where the absolute value is used in
the summand. Another interpretation can be given in terms
of influence function of the theory of M-estimators [6, 7].
Influence function of thel2 approximation is such that in-
fluence of a datum on the estimate increases linearly with



the size of its error. Forl1, influence function is the sign
function, which is bounded, hence the effect of large errors
is not as much.

Since there is an approximate line to the given data points
which minimizes thel1 norm and which passes through two
points of the data set [5, Proposition 2.2], it is simple to
find the optimuml1 line. There also are computationally
efficient algorithms [4, 5].

Notice that in (10) allM of the data points are used
including the outliers, which have not been identified at this
step. Let us define the residue of each data point due to the
l1 line as

ei = jyi � ~yij; 1 � i �M ; (12)

and sort them in ascending order of magnitude resulting in

fek1 ; ek2 ; : : : ; ekM g; ki 2 I; 1 � i � M : (13)

Since we have the assumption that the probability of hav-
ing an outlier is less than about one third, we can consider
two thirds of the data points with less error as the inliers.
Consider the quantity

� =
1p
l
k[ek1 ; ek2 ; : : : ekl ]k2 (14)

with l �M . Then assigning

l = b2M
3

c (15)

yields that� is the censored inlier standard deviation pro-
portional to the true value�c. This now allows us to test for
the remaining points for outliers. For Gaussian small error
assumption, these could for instance be done at4�. Ac-
tually, data pointsfykigMi=l+1 may have greater deviations
but this does not make them outliers automatically. This is
because the actual trend may not be linear. It is, therefore,
necessary to allow certain mismatch between the linear and
actual trend and for this purpose in practice, we can choose
a larger threshold for rejecting outliers. The robust points
are then used in the likelihood ratio test described above.
After this step, we havel � m � M and this value ofm is
to be used in the likelihood ratio test (5).

3.2. Median Filter

Median filter is a sliding window whosel-th output compo-
nent is the median of the windowed samples that is centered
at coordinatel. For a median filterg(�) of length2K + 1,

g(l) = median(fyigl+Ki=l�K) 1 � l �M : (16)

The beginning and the end of the data sequence may be
thought as being padded with zeros to enable the filter op-
erate at both ends of the sequence. Among the desirable

properties of the median filter is that it preserves mono-
tonic trends but eliminates impulses which makes it a natu-
ral choice for our problem [8, 9, 10]. During filtering, each
outlier is replaced by one of the values inside the filtering
window. It is not of high probability that outlier itself is
the median value for that position of the window because it
requires at leastK + 1 outliers present inside the window
of length2K + 1. Also assuming only a few outliers can
be present in one median window, we can say that outliers
are replaced by neighboring inlier values. This estimate is
not the optimum one but it eliminates the effect due to the
gross errors in line fitting. After filtering, likelihood ratio
test (5) is used withm = M , since none of the data points
is discarded.

4. PERFORMANCE

4.1. Examples

As our first example, we applied the scheme to data simu-
lated with a trend as shown in Figure 1. Note that the trend
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Figure 1: Data sequencef(xi; yi)gMi=1 without noise.

is monotonic but not linear. Noise was modeled as a mix-
ture of small and large noise components where the former
was a zero mean Gaussian distribution with standard devi-
ation�c = 2 and the latter was modeled as two Gaussian
distributions with means�r = 100, �l = �100 and stan-
dard deviations�l = �r = 20. The probability of contam-
ination by gross error was 0.1, that is,pl = pr = 0:05.
Length of the median filter was 11. We demonstrate the
performance of the scheme by plotting the receiver operat-
ing characteristics (ROC) curves which show the probabil-
ity of detection versus false alarm probability [2]. For this
case, ROC curves are shown in Figure 2. These were gen-
erated via Monte Carlo simulations with 5000 realizations



by passing noise only and noisy data separately through the
detector and computing the detection rate for a given false
alarm probability. As can be noticed from the curves, me-
dian filtering increases the performance of the detector and
the editing filter performs far more better.
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Figure 2: ROC curves with different filtering methods for
the trend shown in Figure 1. Curves are for no filter (dash-
dotted), median filter (dashed) and editing filter (solid). Pa-
rameters:�c = 2, �r = �l = 20, �r = ��l = 100,
pl = pr = 0:05, length of the median filter is 11.

Notice that ROC curve corresponding to the case with
no filtering does not reach to unity for any false alarm prob-
ability. This is because of the nonzero probability of having
positive slope in line fitting when the actual trend is decreas-
ing. This is more noticeable in the case with no filtering
where we have the outliers present in the data. It is much
less for the median filter curve and almost none for the edit-
ing filter case.

In our second example, we used a linear trend with slope
a = �0:5 and offsetb = 100 to obtain synthetic data. Here,
we want to compare the performances of using median or
editing filter on noisy data inl2 line fitting, which is an
important problem in many engineering areas [11]. Noise
characteristics were the same as above except for we had
�c = 5 andpl = pr = 0:1. For each of the 5000 noise
realizations, a line was fitted, inl2 sense, to noisy data and
to data filtered using median and editing filters. Mean and
variance of the resulting slope and offset estimatesâ andb̂
are shown in Table 1. Using editing or median filters on
the data before line fitting provided lower variances on the
estimates than that of using no filtering.

No filter Median Fltr. Editing Fltr.

mean of̂a -0.5187 -0.4634 -0.5028
variance of̂a 0.7767 0.0412 0.0253
mean of̂b 100.3397 99.4045 100.0268
variance of̂b 276.3910 13.0301 9.4356

Table 1: Mean and variance of 5000 estimates of slope and
offset of a line witha = �0:5 andb = 100.

4.2. Comparison with Theory

It is also possible to characterize the distribution of the test
statistic underH0 with Gaussian errors. Recall that the test
statisticL is the ratio of the sum of squared errors of the
best fit of the filtered data(xm;ym) to a constant versus
that of the best fit to a decreasing linear trend. Then under
H0 (when the real trend is constant), with probability1=2,
the best fit linear trend is an increasing one andL takes the
value 1. With the remaining probability1=2, if we make
the assumption that the editing filter perfectly edits out the
outliers and retains the rest, both the numerator and the de-
nominator of the test statistic are�2 distributions scaled by
the variance of the small error. In particular the numerator
is the squared norm of the projection ofym onto the orthog-
onal complement of the space spanned by1m = [1 1 � � � 1]
and so hasm � 1 degrees of freedom. The denominator is
the squared norm of the projection ofym onto the orthogo-
nal complement of the space spanned by1m andlim where
the latter corresponds to a linear trend. The numerator is
therefore the sum of the denominator and an independent
�2 variable with 1 degree of freedom. In this case,L is of

the form1 +
�2
1

�2
m�2

where the ratio is also known as the F-

distribution (Fisher’s variance-ratio distribution) [12]. Thus
L has a distribution which is a(1=2; 1=2) mixture of a point
mass at 1 and a shifted F-distribution.

This does not depend on the variance of the error or on
the probability of gross error (if the editing filter works per-
fectly, otherwise depends weakly) and therefore allows a
pre-computation of the threshold for fixing the false alarm.

The distribution underH1 depends on a pair of param-
eters�1 and�2. �1 is the ratio of the norm of the projection
of the actual trend onto a linear one (suitably accounting for
the discarded outliers) to the error variance and plays the
same role in performance as the SNR in the signal detection
problem.�2 captures the misfit to the linear trend and has a
more complex and weak influence on the performance.

We next display the comparison between the ROC curves
generated from the Monte Carlo simulations and the behav-
ior of the modified F statistic described above. For our prob-
lem with large errors, we assumed a simplified theoretical
model in which the error distribution corresponded to the
small error distribution and points were selected at random



with the probability of the gross error and discarded. This
simulates the action of a perfect editing filter which rejects
all the data points with gross error and no other points. Fig-
ure 3 shows the above comparison of the ROC curve gen-
erated by this simplified theoretical model with the Monte
Carlo results. The reasonably close match indicates the effi-
ciency of the editing filter. Moreover it allows us to use the
parameters defined above as indicators of detection perfor-
mance.
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Figure 3: The ROC curves obtained using a simplified the-
oretical model and Monte Carlo simulations. The small er-
ror standard deviation is2 and the gross error probability is
0:07.

5. CONCLUSION

A robust procedure for detection of monotonic trend of a
data sequence, when the data is subject to gross errors, is
described. The problem is formulated as one of hypothe-
sis testing with the hypothesis being constant trend or de-
creasing trend. Robust statistics are obtained by line fit-
ting to data sequence after detecting the outliers and either
eliminating them using editing filter or replacing them with
proper substitutes using median filter. Performance of the
method is demonstrated by using receiver operating charac-
teristic curves where we have shown that using median filter
on the raw data enhances the detection probability. Editing
filter performs far more better. Also, it has been demon-
strated by Monte Carlo simulations that using editing fil-
ter improves the performance of line fitting in least squares
sense to a linear trend in impulsive noise.

6. REFERENCES

[1] A. J. Efron and H. Jeen, “Detection in impulsive noise
based on robust whitening,”IEEE Trans. Signal Pro-
cessing., vol. 42, pp. 1572–1576, June 1994.

[2] H. V. Poor, An Introduction to Signal Detection and
Estimation. Springer-Verlag, 2nd ed., 1994.

[3] A. A. Giordano and F. M. Hsu,Least Square Esti-
mation with Application to Digital Signal Processing.
New York: John Wiley & Sons, 1985.

[4] I. Barrodale and F. D. K. Roberts, “An improved al-
gorithm for discretel1 linear approximation,”SIAM J.
Numerical Analysis, vol. 10, pp. 839–848, Oct. 1973.

[5] H. Imai, K. Kato, and P. Yamamoto, “A linear-time
algorithm for linearl1 approximation of points,”Algo-
rithmica, vol. 4, pp. 77–96, 1989.

[6] P. J. Huber,Robust Statistical Procedures. Philadel-
phia, PA: SIAM, 2nd ed., 1996.

[7] W. J. J. Rey,Introduction to Robust and Quasi-Robust
Statistical Methods. Berlin: Springer-Verlag, 1983.

[8] F. Kuhlmann and G. L. Wise, “On the second moment
properties of median filtered sequences of independent
data,” IEEE Trans. Comm., vol. COM-29, pp. 1374–
1379, Sept. 1981.

[9] Neal C. Gallagher, Jr. and G. L. Wise, “A theoreti-
cal analysis of the properties of median filters,”IEEE
Trans. Acous. Speech, Signal Proc., vol. ASSP-29,
pp. 1136–1141, Dec. 1981.

[10] A. Restrepo (Palacios) and L. Chacon, “A smooting
property of the median filter,”IEEE Trans. Signal Pro-
cessing., vol. 42, pp. 1553–1555, June 1994.

[11] G. Danuser and M. Stricker, “Parametric model fit-
ting: From inlier characterization to outlier detection,”
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 20, pp. 263–280, March 1998.

[12] M. G. Kendall, A. Stuart, and J. K. Ord,Kendall’s Ad-
vanced Theory of Statistics, vol. 1. New York: Oxford
University Press, 5 ed., 1987.


