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ABSTRACT

Estimation of complexity is of great interest in
nonlinear signal and system analysis. In the present
study, complexity measures derived from the Shan-
non entropy, the Harvda-Charvat-Darévezy-Tsallis
and their corresponding information are presented.
The performance of the proposed measures in the
presence of changing complexity were evaluated
through numerical experiments. An application
with real data (electroencephalograms) is presented.
The analysis were compared against classical tech-
niques (Ziv and Lempel, Approximate entropy, Lya-
punov exponents). The results obtained showed
that the entropic approach allows to discern in a
similar qualitative fashion the complexity changes,
with much less computational cost.

1. INTRODUCTION

In the study of nonlinear dynamical systems we of-
ten deal with experimental data where the under-
lying dynamics is not well known. Most of them
present a rich variety of self-oscillating regimes
that involve either regular or complex behavior [2].

The algorithm complexity for sequences of fi-
nite length was suggested by Ziv and Lempel, and
it is related with the number of distinct substrings
and the rate of their recurrence along the given se-
quence [8]. Ziv-Lempel (LZ) complexity can be a
finer measure than the Lyapunov exponents for
characterizing order. Another measure of com-
plexity (regularity) is the Approximate Entropy
(ApEn) [10] that allows complex system classifi-
cation. It is well known its ability to quantify

complexity with a reduced amount of data point
although it requires a relative high computational
burden. LZ complexity and ApEn are not mea-
sures of chaos but they quantify the regularity em-
bedded in the time series.

The renormalized entropy, opposite to other
complexity measures, is defined relative to a fixed
state and has been used to indicate all transitions
from periodic to chaotic behavior as well as be-
tween different types of chaos [11]. Basically it is
the Kullback Information respect to a state with
a given value of effective energy. The main dis-
advantage of this technique, as most of the usual
complexity measures (correlation dimension, Lya-
punov exponents), is the large amount of data re-
quired for their estimation.

Several notions of entropy have been used to
characterize the order degree in ordinary differ-
ential or difference equations. The application of
quantitative measures for the analysis of such sig-
nals has helped to gain better understanding of
the system dynamics [11]. The classical Shannon
entropy, which comes from information theory, de-
scribes the evolution of order. In this study, the
Shannon entropy and the more general Harvda-
Charvat-Darévezy-Tsallis [6, 4, 15] (g-entropies)
and their corresponding relative informations are
presented as complexity measure estimators. We
compare the Shannon, (g-entropies) and their in-
formation measures against the LZ, ApEn and Lya-
punov exponents. Some examples of known non-
linear systems and the analysis of real data are
presented.



2. COMPLEXITY MEASURES

In this section we will briefly review the complex-
ity measures considered in this study. For more
comprehensive discussions, see e.g. [6, 4, 8, 10, 14].

2.1. Approximated Entropy (ApEn)

The approximated entropy can classify a system
given at least 1000 data values in diverse settings

both deterministic, chaotic and stochastic processes.

The capability to discern changing complexity from
such relatively small amount of data holds promise
for application of ApEn to a variety of contexts.
Given a finite time series u(1), w(2), ..., u(N)
and a fix positive integer m and r a positive real

number we considered the embedding vectors z(1), ...

m+1) in IR, where z(j) = [u(j),u(j+1),..., u(j+
m—1)]. Foreachi, 1 <i< N—m—1C"(r)=(
number of j < N —m+1 such that d(z(3), z(j)) <
r)/(N—m+1), where d(x(i), (7)) is the lo norm.
Define

ApEn (m,r) = limy_so[®™(r) — @™ (r)], (1)

where
N—m-+1
O™ (r) = Z In C*(r) /(N —m+1).
i=1

2.2. Ziv-Lempel (LZ)

As proposed in [8], the complexity of a finite se-
quence can be evaluated from the point of view of a
simple self delimiting learning machine which, as it
scans a given N-digits sequence u = u(1),...
from left to right, adds a new word to its memory
every time it discovers a substring of consecutive
digits not previously encountered. The size of the
compiled vocabulary and the rate at which new
words are encountered along u serve as the basic
ingredients in the LZ complexity evaluation.

2.3. Entropies

Given a signal u we can defined its Shannon en-
tropy as [12]:

M
H==> pi In(p), (2)
=

where p; is the probability that the signal belongs
to a considered interval and with the understand-
ing that, p In(p) = 0 if p = 0. The entropy H
is a measure of the information needed to locate
a system in a certain state j*; it means that H
is a measure of our ignorance about the system.
The Harvda-Charvat-Darévezy-Tsallis [6, 4, 15] ¢-
entropy, that depends on a single real parameter
q, reads as

M
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(3)

2.4. Relative entropies

The entropy of a random variable (rv) is a mea-
& of the uncertainty of the rv; it is a measure of
the amount of information required on the over-
age to describe the rv. The relative entropy is
a measure of the distance between two distribu-
tions. The relative entropy (or Kullback—Leiber
distance) D(f|g) between two probability densi-
ties f and g is defined by [3]:

f(z)

D(flg) = _ f(z) In—=,

%: 9(z)

where we use the convention that yIn(y) = 0 if

y = 0. In the g-entropies case, for ¢ # 1 and

q € R the corresponding relative g-entropies are
given by [14]:

! f@\""
me(-(5m) ) e
The Kullback divergence K Div(f|g) between two

probability densities f and g is defined by [3]:

KDiv(f|g) = D(flg) — D(glf)

(4)

Dqy(flg) =

(6)

3. RESULTS AND DISCUSSION

In order to compare the performance of the com-
plexity measures previously described, we present
numerical simulations with nonlinear dynamical
systems and electroencephalograms (EEG) signals.
The central idea of the entropic analysis is that of
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Figure 1: The quadratic map: z(n + 1) =

az(n)(1 — z(n)), evaluated at N = 1500 points.
The bifurcation diagram of the quadratic map
(top), the ApEn (middle) and the LZ (bottom)

are plotted as functions of the parameter a.
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Figure 2: The Lyapunov exponent (top panel),
Shannon entropy (middle) and g-entropy (lower
plot) of the quadratic map signal corresponding
to different a-parameter values.
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Figure 3: Kullback relative entropy (top), Kull-
back divergence (middle) and g-divergence (bot-
tom) of the quadratic map signal corresponding
to different a-parameter values.

being in a position to generate, from a given non-
linear signal, a suitable probability set. Once the
probabilities are determined, the entropies and in-
formation measures are computed according to the
pertinent definitions. The algorithms have been
implemented in Matlab 5.2.

Figure 1 shows at the top panel the quadratic
map bifurcation diagram with a parameter a €
[3.2,4]. The middle panel plot the ApEn evalu-
ated over 1500 samples corresponding to each pa-
rameter values removing the transient behavior.
The LZ (Figure 1 bottom), Lyapunov exponent
(Figure 2 top), Shannon entropy (Figure 2 mid-
dle) and g-entropy (Figure 2 bottom) were evalu-
ated considering the same signals. In the case of
the relative measures (Figure 3) we have consid-
ered windows of the same length and consecutive
parameter values.

Some physiological systems behave in a non-
linear chaotic fashion and different methods have
been developed to estimate the complexity of such
behavior. An example of real data corresponding
to epileptic EEG signal is presented. Some au-
thors have shown that the variability of the EEG
signals does not represent noise but is the signa-
ture of an attractor [9, 1]. lasemidis et al. [7] have
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Figure 4: EEG signal (top) corresponding to an
epileptic seizure. At the middle and button pan-
els the plots of the entropy and g-entropy evolu-
tions evaluated for adjacent running windows of
500 samples.

established that, during the preictal period, sig-
nals from each electrode exhibit positive values of
the first Lyapunov exponent (A1), with multiple
transient drops; at the onset of the seizure, signals
show a drop in A to its lowest value.

The EEG record here presented correspond to
a patient explored with 12 multi lead electrodes.
The analysis of interictal and ictal data is usually
of visual nature. The signals were amplified and
filtered using a 1-40 Hz band-pass filter. A four-
pole Butterworth filter was used as an anti-aliasing
filter. The EEG was sampled at 256 Hz through a
10 bits A/D converter.

Figure 4 (top) depicts the raw EEG data. The
middle and bottom panels plots the entropy and
g-entropy evolutions evaluated for adjacent non-
overlapped running windows. All the experiments
were performed with a window width of 500 sam-
ples. The ApEn and Ziv-Lempel complexity (bot-
tom) are presented in Figure 5. The results of
evaluating the Kullback relative entropy, Kullback
divergence and g-divergence are presented in Fig-
ure 6. At the seizure onset that appears in the
initial stages as transients in the data, its complex-
ity is higher than basal state as it was expected.
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Figure 5: Approximated entropy (top) and Ziv-
Lempel complexity (bottom) evolutions corre-
sponding to the EEG signal shown in Figure 4,
evaluated for adjacent running windows of 500
samples.

As the seizure progresses, the signal appears to be
more regular, and thus, the complexity change in
a comparative sense. At the end of the seizure,
transients are observed again.

It is known the capability of the ApEn to dis-
cern changing complexity for relative small amount
of data and it was observed in the examples. How-
ever, the entropies time evolution, allowed to es-
tablish a suitable agreement with the results ob-
tained either with ApEn and LZ measures with
a much less computational cost. Our approach
allows not only to discern in a similar qualita-
tive fashion the complexity changes, but also, by
means of the multiresolution entropy [13, 5|, fre-
quency bands of different complexity could be es-
tablished. Multiresolution analysis allows the pos-
sibility of introducing a different, and perhaps more
elaborate, information measure, that naturally in-
corporates all the advantages of wavelet analysis.
Application of entropies and information measures
in nonlinear signal analysis should be considered
as a promising tools in real time applications.
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Figure 6: Kullback relative entropy (top panel),
Kullback divergence (middle panel) and g¢-
divergence (lower plot) evolutions corresponding
to the EEG signal shown in Figure 4.
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