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ABSTRACT

In this paper we analyze sleep spindles, observed in EEG recor-
ded from humans during sleep, using both time and frequency do-
main methods which depend on higher order statistics and spectra.
The time domain method combines the use of second and third
order correlations to reveal information on the stationarity of pe-
riodic spindle rhythms, detecting transitions between multiple ac-
tivities. The frequency domain method, based on the normalized
bispectrum, describes the frequency interactions associated with
the second order nonlinearities occuring in the observed EEG. Re-
sults for real data are presented.

1. INTRODUCTION

The EEG is a continuous time-varying voltage, reflecting ongoing
functional activity in the brain [1]. EEG activity typically has am-
plitudes from10 to 100�V and a frequency content of from0:5 to
40 Hz. Signals of10 to 30�V are considered low amplitude and
potentials of80 to 100�V are considered high amplitude. EEG is
traditionally divided into four bands:� from 0 to 4 Hz, � from 4
to 8 Hz, � ranging8 to 13 Hz and� from 13 to 30 Hz. An alert
person displays a low amplitude EEG of mixed frequencies in the
13 to 18 Hz range, while a relaxed person produces large amounts
of sinusoidal waves, at a single frequency in the8 to 13 Hz range
which are particularly prominant at the back of the head.

Adult human sleep, for which several models have been pro-
posed [2], is classified into waking (W), quiet sleep (QS), and rapid
eye movement (REM) stages. QS is further differentiated into four
stages on the basis of brain, muscle, and eye activity. QS, REM,
and occasional momentary wakings occur in a periodic sequence
throughout the night, taking approximately 90 min in the adult.
There is some suggestion that this alteration of W, QS, and REM
is a manifestation of a basic rest/activity cycle characterized by
periods of relative activity and action alternating with periods of
relative inactivity and fantasy over the entire day.

As an individual goes to sleep, alpha activity is replaced by
a lower amplitude, mixed frequency voltage (stage 1 QS), which
within minutes has superimposed 1- to 2-s bursts of12 to 14 Hz
activity called sleep spindles (stage 2, QS). Spindle activity can be
considered as oscillations and noise-free sleep spindle waveforms

may exhibit periodic, quasiperiodic or complex oscillations. Ear-
lier studies [3, 4] have shown that there coexist two types of spon-
taneous spindle waves. In more recent work [5], it has been shown,
by using matched filtering techniques, that one of these activities
is centered around12 Hz and the other around14 Hz. In a re-
cent study, Sunet al.,[6] localized spindle activity in the brain via
time-frequency analysis and synthesis of EEG, and showed that the
origin of this activity is in the area of thalamus in humans, which
is in agreement with previous data from the cat [4].

In this paper we apply higher order statistical measures both
in the time and frequency domains to investigate the spindle ac-
tivity associated with stage 2 sleep. While the time domain tech-
niques, which depend on the combination of second and third or-
der statistics to trace the oscillatory dynamics of the waveforms
around spindle activity, are used to investigate the nonstationary
behavior of the spindles, the frequency domain method is used to
investigate frequency interactions related to nonlinear properties of
the central nervous system. Note that some earlier EEG analysis
using higher-order statistics and spectra can be found in [7]-[11].

2. HIGH-ORDER STATISTICS OF SIGNAL

Autocorrelation function,R(� ) = E[x(n)x(n + � )], for wide-
sense stationary signalx(n), is widely used in signal process-
ing. However, it suppresses the phase relationships of these com-
ponents. This loss of information can be important if there ex-
ists phase couplings due to nonlinearities in the signal of interest.
Phase information is preserved when the order of the spectra is
greater than two [12]. The autotriplecorrelation function (third or-
der statistics)c(�1; �2) of x(n) is defined as [13]:

c(�1; �2) = E[x(n)x(n+ �1)x(n+ �2)]; (1)

and the 2-D Fourier transform of this equation, the bispectrum of
the signalx(n), is expressed by

B(!1; !2) =
X
�1

X
�2

c(�1; �2)e
�j!1�1e

�j!2�2 : (2)

It can be shown [13] that the bispectrum in (2) can be written
as

B(!1; !2) = A(!1)A(!2)A
�(!1 + !2) (3)



where� denotes complex conjugate, andA(!) is the discrete Fourier
transform ofx(n).

For a stochastic processx(n),B(!1; !2) is a random variable.
Its expected value is given by

�B(!1; !2) = E[A(!1)A(!2)A
�(!1 + !2)] (4)

and the normalized bispectrum (also referred to as bicoherence,
second order coherency, bicoherency index, etc.,) [13]:

b
2(!1; !2) =

j �B(!1; !2)j
2

�P (!1) �P (!2) �P (!1 + !2)
(5)

where �P (!) = E[A(!)A�(!)]. b2(!1; !2) is a useful tool for
detecting and characterizatin nonlinearities [14], i.e., quadratically
couplings.

If x(n) is a periodic sequence with periodp, thenR(�) is
also periodic. In speech analysis problems, (for example, pitch
period estimation) a widely used technique that eliminates the need
for the computation ofR(�) is based on the followingkth order
difference [15]:

d(n) = x(n)� x(n� k) (6)

which is zero fork = 0;�p;�2p::: when the signalx(n) is truly
periodic with periodp. This is clearly a faster method than most of
the other period estimation techniques since it is just a difference
equation. Now, by assuming that the sleep spindle segment of EEG
is periodic, we can use a function ofd(n) to estimate the period

n(k) =
X
m

jx(n+m)wa(m)�x(n+m�k)wb(m�k)j (7)

which is referred to as the short-time Average Magnitude Differ-
ence Function (AMDF) [15]. One important feature of this func-
tion is that if the windowswa(m) andwb(m) are identical then
it is indeed similar to the autocorrelation function [15]. Note that,
the lower and upper boundries of (7) should be arranged properly
when the data is of finite length.

In the study of experimental data in this paper, we use the
following modified version:

Dn(k) = 1�
n(k)P
i
2n(i)

(8)

which is similar to a normalized autocorrelation function and can
be considered to be a second order statistical measure, where the
term
P

i
2n(i) is a normalization factor.

The inverse Fourier transform of the bispectrumB(!1; !2),
when calculated on one slice!1 = !2 = !, i.e.,

q(n) =
1

2�

Z �

��

B(!;!)ej!nd!

=
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m

c(m;n�m) (9)

is called the sum-of-autotriplecorrelations (SOAT) [16]. Clearly,
the SOAT in (9) are third order statistics and can be made similar
to (2) and (8), i.e.,

'n(k) =

MX
m=�M

jq(n+m)w(m)�q(n+m�k)w(m�k)j (10)

and
Qn(k) = 1�

'n(k)P
i
'2n(i)

(11)

wherew(n) is, again, a window function andM is an integer
value defining the boundaries of the data segment, and the termP

i
'2n(i) is the normalization factor.
We use the second and third order statistics (equations (8) and

(11) respectively) together to estimate the periodicity of the spin-
dle activity. If the spindle activity is purely periodic we expect
these estimates to give similar results. If the results are not sim-
ilar, then the existence of other linear or nonlinear relations are
suggested. Moreover, the AMDF of SOAT in equation (11) can
reveal background frequency sources even though other methods
may under-estimate them.

3. COMPUTING METHODS

In practice, longer data is needed for meaningful bispectrum esti-
mation [13]. We therefore group the EEG data over selected time
segments (stages) for the frequency domain analysis. The set of
electrodes are partioned into frontal, central and parietal subsets,
i.e.,
set C = (Cz, C1, C2, C3, C4, C5, C6 ),
set F = (Fz, F1, F2, F3, F4, F5, F6, F7, F8, F9,
F10),
set P = (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 ).
(See: Figure 1 for the locations of the EEG electrodes.) While
associating these neighboring electrodes, we visually evaluate the
data. Moreover, we check for the results of commonly used second-
order statistical classification methods such as correlation coef-
ficients, ratio of harmonic energies, normalized bandwidths and
mean frequencies [17]. Since approximately equivalent results are
obtained, the channels are assumed to be associated adequately.

The estimation of the (averaged) normalized bispectrum is then
accomplished for each group of channels sharing common fea-
tures. These steps are itemized below:

� Apply a 256-point Hamming window to the EEG data to
assure local stationarity.

� Remove the mean and estimate the bispectrum by the “di-
rect method” [13].

� Repeat for all the members of the set and then average the
bispectral values.

� Estimate the power spectrum of each segment and average
them in a similar fashion.

� Mask the bispectral values below 10 % of the maximum
peak value.

� Calculate the normalized bispectrum by using (5). Only the
significant levels of normalized bispectrum (b2 > 0:1) are
considered for the evaluation of enery interaction among
frequencies.

It is important to note that, the results are obtained over one
triangular region!2 > 0, !1 > !2 and!1 + !2 < �, simply
because the bispectrum (normalized bispectrum) can be fully de-
scribed over all frequencies by using the values in this region via
its symmetry properties [13].



4. RESULTS

The top plots in Figure 1-(a) and (b) are segments of 8 seconds
containing spindle activity. Visual evaluation and energy distri-
bution of bandpass filtered data show that spindle activity starts
approximately at sample point 1000 and ends at 1400 both for Cz
and Pz channels.

In Figure 2-(a) and (b), a1 second time region (between sam-
ples1135 to 1390) where spindle activity is in progress is shown
for Cz and Pz. The second order time-domain estimates (the mid-
dle plots of Figure 2) are similar for these channels. This suggests
that any second order method (e.g., autocorrelation or power spec-
trum) will yield similar results in this segment. However, when we
examine the third order estimates (the bottom plots of Figure 2),
it may be seen that the results for Cz and Pz are different. When
the window is moved forward to cover samples1198 to 1453 the
second and third order estimates have similar results as shown in
Figure 3-(a) and (b) consistent with the observed steady-state os-
cillation in all channels.

The averaged normalized bispectra1 of set C and set P
from sample1135 to 1390 are given in Figures 4-(a) and (b), re-
spectively. In Figure 4-(a), forset C , the frequency regions at
(f1; f2) wheref1 = 12 � 14 andf2 = 1 � 2 Hz; f1 = 6 � 9
andf2 = 4 � 6 Hz; f1 = 12 � 14 andf2 = 13 � 14 Hz;
and finallyf1 = 1:5 andf2 = 4:5 Hz show strong (almost unity)
quadratical interactions. The results related withset P is given
in Figure 4-(b). It is clear that for this time period, this region of
brain is highly dominated by the spindle activity. However, the
normalized bispectrum suggests that it would be more realistic to
think that the sleep spindle activity has at least some types of sec-
ond order nonlinearity (due to the appearance of the strong inter-
actions in thef1 = 13� 15 andf2 = 12:5 � 14 Hz region).

We show the contour plots of the averaged normalized bispec-
tra forset C , andset P when the window is moved forward to
cover samples1198 to 1453 in Figure 5-(a) and (b), respectively.
The normalized bispectra, when compared to Figure 4-(a) indicate
relatively weaker quadratical interactions in the(f1+f2) � 13 Hz
line. The normalized bispectrum related withset P confirms that
the spindle activity is dominating this region of brain with showing
small interactions with other lower frequency components.

5. CONCLUSION

We have investigated time and frequency domain methods for an-
alyzing sleep spindles. The time domain methods depend on the
combination of second and third order statistical tools to detect the
oscillatory dynamics of the spindle activity. In particular, we used
two types of estimates: the autocorrelation and average magni-
tude differentiated sum-of-autotriplecorrelations. If both of these
second and third order methods exhibit similar periodic behav-
ior then we conclude that only “stationary” spindle activity ex-
ists. However, if they are different then the data has some influ-
ence from other (linear or nonlinear) activities which may occur
due to complexities within this particular frame [18]. The exis-
tence of a nonlinearity has been tested via the bispectral analysis
of EEG which characterizes the interaction of activity (within se-
lected EEG segments) for different frequencies. For the frequency
domain method, we have summarized the estimation method of

1For visualization purposes, the values are normalized with respect to
the peak value and the normalized bispectrum is shown only within the half
of the triangular region.

the normalized bispectrum and discussed the issues of detecting
those quadratic couplings which may occur due to existing nonlin-
earities. We have applied the bispectral techniques to adequately
grouped EEG sleep stages and different epochs of various EEG
sleep recordings. Our results suggest that, during sleep spindle ac-
tivity, some types of nonlinearities exist. However, since our tests
were limited to identifying second order nonlinearities, the exis-
tence of higher-order (> 2) nonlinearities may be checked in the
future for all possible orders of the normalized higher-order spec-
tra.
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Figure 1: Location of 64 recording electrodes utilized in obtaining
the data in this paper.
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(a) Eight seconds of Cz data (top), its energy distribution after
bandpass filtering (bottom).
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(b) Eight seconds of Pz data (top), its energy distribution after
bandpass filtering (bottom).

Figure 2: Raw EEG samples of Cz and Pz (top plots) and after
applying a bandpass (8-15 Hz) filter to each channel, their energy
distributions over samples (bottom plots) in (a) and (b), respec-
tively.
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(a) Data segment of Cz (top), ADMF (middle) and ADMF of
SOAT of the sleep spindle data.
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(b) Data segment of Pz (top), AMDF (middle) and AMDF of
SOAT of the sleep spindle data.

Figure 3: EEG segments of Cz and Pz from samples1135 to 1390
(top plots), AMDF measurements (middle plots), AMDF of SOAT
of data with lag 100 (bottom plots) in (a) and (b), respectively.
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(a) Data segment of Cz (top), ADMF (middle) and ADMF of
SOAT of the sleep spindle data.
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(b) Data segment of Pz (top), AMDF (middle) and AMDF of
SOAT of the sleep splindle data.

Figure 4: EEG segments of Cz and Pz from samples1198 to 1453
(top plots), AMDF measurements (middle plots), AMDF of SOAT
of data with lag 100 (bottom plots) in (a) and (b), respectively.
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(a) Image view of the normalized bispectrum for set C.
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(b) Image view of the normalized bispectrum for set P.

Figure 5: Image view of the normalized bispectrum from samples
1135 to 1390: (a) for set C; (b) for set P.
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(a) Image view of the normalized bispectrum for set C.
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(b) Image view of the normalized bispectrum for set P.

Figure 6: Image view of the normalized bispectrum from samples
1198 to 1453: (a) for set C; (b) for set P.


