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ABSTRACT be estimated is reduced. Moreover, this approach has been

. - . successfully validated on real underwater sonar signals for
This paper presents an original approach for nonlinear V0|ter53110nlinear Jammer application [6]

and NARMAX filter identification. We propose here to use
a non persistent excitation of input sequence to excite few
terms of the Volterra and NARMAX filter, which must sat- for the NARMAX filter and to define expressions which

isfy a set of physical constraints. Expressions have been deZavaluate the accurate number of excited terms of these com-

velopped to evaluate the accurate number of excited termspact Volterra and NARMAX filters for a particular BPSK

of the Volterra and NARMAX filter. sequence (section 5.). lllustrative examples are also pro-
posed in this section.

The contribution of this paper is to extend this approach

1. INTRODUCTION

The necessary characteristics required for linear filter iden- 2. PERSISTENCE OF EXCITATION CONDITION

tification are well understood [1]; however, the requirements FOR THE VOLTERRA FILTER
for nonlinear filter excitation have not been yet studied in
great details. 2.1. Volterrafilter

This paper deals with input signals for the identification of
nonlinear discrete time systems via a \Volterra and a NAR-
MAX (Nonlinear Autoregressive Moving Average model
with eXogenous inputs) filter. The Volterrafilter is attractive

The discrete-time invariant Volterra filter with memory length
m, and order of nonlinearity, with L samples, is defined

because it is a straightforward generalization of the linear AL et

system description and the behaviour of many physical sys- vk = »_ > hi(j1, -+, jn)Th—jy - Ty, (1)
tems can be described with a Volterra filter [2]. In a similar i=1 j1,,jn=0

manner, the NARMAX filter can, by including information or with a matrix representatiayp, = X 6 + n;, where
from both lagged inputs and outputs, provide a very conciseyk = [y, - ,yr_r+1]* is the observed output sequence
representation for nonlinear physical systems [3]. associated with the input sequengg 6 is the vector of the

\olterra parameters ang; is a noise sequence arXly, is

It has been shown in [2] that the g-level RMS (Random pe (L xp) data matrix defined by 4 Xp, -+ ,Xk—L+1]t
Multilevel Sequence) input sequence guarantees the persisyith
tence of excitation (PE) condition of the Volterra filter with A .
nonlinearities of ordeD with ¢ > D + 1. Unfortunately Xk = [Bkeji Thoji®hjs o Theji Bhja oo Thjp]
for a high order Volterra and NARMAX filter, the increas- forji,....jp =0...m; — 1.
ing number of terms leads to a ill-conditioned data matrix |t xt X is full rank, then the least squares estimate of the
(presented in section 2.). filter parameters is given by

A recent approach developped in [4] and [5] uses a non 0= (X3 X)) X}y, (2)

PE input sequence for Volterra filter identification. The goal The number of unique products in Eq. (1) is given by
of this approach is to use a input sequence which excite as
few as possible terms of the \Volterra filter (section 3. and (D + my)! 1 3)

: Pv = —F7——>  —
4.), and so the number of parameters of the Volterra filter to v D'm,!



ForD = 3, m, = 14 py, = 679.

2.2. Persistence of excitation condition

Once, the Volterra parameters of the system described in Eq
(1) are identified, the PE condition can be defined as in [2]

by :

Definition 1 Assume that the sequeneg is a stationary
random process. If the correlation matii¥ of the Volterra
filter

Rx & EXgx7)

(4)

exists and is nonsingular, then the input sequercis said
to be PE of degree:,, and orderD.

The RMS input signal is usually used as a PE sequence be
cause the RMS sequence defined below satisfy the PE con
ditionif ¢ > D +1[2]

Definition 2 Let x;, be an i.i.d. sequence which takes on
a finite number of distinct valuds, l», - - - , [, with corre-
sponding probabilitieg, , p2, - - - , py

7, pi = 1. Thenzy, is called a g-level RMS,

However for high order Volterra filters the increasing num-
berp,, leads inevitably to a ill-conditioned matrix . Di-

rect inversion of the data matriX; X, becomes numer-
ically ill-posed. To reduce this numbes,, an alternative
solution is proposed with a non persistence of excitation in-
put sequence.

The originality of this approach is to use a cyclosta-
tionnary Binary Phase Shift Keying (BPSK) input sequence
which takes a finite number of distinct values. This se-

guence doesn’t respect the PE condition because it's notan 3,

i.i.d. sequence. Moreover this BPSK sequence excite few
terms of the Volterra filter.

3. NON PERSISTENCE OF EXCITATION INPUT
FOR THE VOLTERRA FILTER

This approach proposes a BPSK input sequence which a
lows to reject Volterra filter terms by the evaluationfy ;
a minimal filter is constructed with only the excited terms.

3.1. The BPSK input sequence

The BPSK signal is a cyclostationary signal (see [7] for its

properties). Taking the sampling frequency as an integer
multiple of the baud rate of a continuous BPSK signal, the

discrete-time BPSK signal, is expressed as

ze =Y anp(k — mR) cos(2nfok) k=0,1,2...

m=0
()

whereR corresponds to the number of points per keying in-
terval, fy is the reduced carrier frequendy,,, } is an i.i.d.
sequence equal tal andp(k) is the rectangular pulse such
thatp(k) = 1fork =0,... , R — 1 and 0 otherwise.

3.2. Extension of the definition of the correlation matrix

In order to obtain the minimal Volterra filter, we must extend
the definition of the correlation matrix for an asymptotically
stationary sequence [4],

T-1

> E[XieiXfiy]

=0

1
T

Ry 2 lim (6)
T—o00

The excited terms of the Volterra filtgf, (dim(x},) < dim(x))
correspond to a full rank sub-matrikx.. The theoretical
calculation of this correlation matrix has been studied in the
white case in [4] and for all BPSK sequences in [5].

3.3. Construction of the minimal Volterra filter

In order to evaluate the minimal Volterra model the follow-
ing procedure is used :

1. the correlation matriRyx for a cyclostationary BPSK
sequence is computed,

. the rank ofRx allows to determine a parsimonious
vectorx), which only takes terms of;, associated to
non zero eigenvalues @iy ,

the reduced correlation matrRx: is now full rank
and the minimal Volterra model is given by t¢
terms. The evaluation of, is computed iteratively.

4. INFLUENCES OF THE CARRIER FREQUENCY
In the sequel the input sequence is assumed to have a large
bandwidth.

4.1. Frequency representation

Signal BandwidthB of the BPSK input sequence is in-
versely proportionaltd (for R = 1, BPSK signal is white).
To generate a BPSK sequence with= 2 Ay (B €
[f1 — Ay, f1 + Ay]) centered on the frequengy, we must
takeR = 1/A; andf, = fi1. Figure 1 represents the power
spectral density of the BPSK sequence for= f; = 0.20
and forR=1, 5 and 10.
We can now show the infuence @f on the finite num-
ber of distinct values of the sequence.




, 3P°We' spectral density for , :30-20 4.3. Relationship between the number of distinct values
‘ ‘ ‘ ‘ Ret0, R0 1 and the number of excited terms of the Volterra filter

Figure 3 shows the evolution of the number of excited terms
when the number of points per keying intervA)(increases
and for three differents carried frequencies, using the proce-
dure described i§3.3. We can see that best performances
are obtained withfy, = 0.25 (3 levels) and withfy = 0.20
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Figure 1: Frequency representation of a BPSK sequence : 3001
fo=0.2.
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4.2. Number of distinct values of the BPSK input se- 0 ‘
1 2 4 6 8 10 12 14 16 18 20
qguence R

The finite number of distinct values of the BPSK input se- _ _ .
quence is directly dependent of the carrier frequency. Fig- Figure 3: Nymber of excited terms of a Volterra filter versus
ure 2 represents the evolution of the number of levels of "€ keying interval. Volterra filteD = 3 andm, = 14

the sequence whefy varies and takes the following values 679 initial terms

fo=0.01,....,0.49. For R = 1 the BPSK input sequences are white. The

white BPSK input sequence witfy = 0.25 (3 levels) cor-
Momber ofdistnet values responds to the more efficient non PE sequence (see figure
3). The number of terms of the minimal \Volterra filter, in

“er i this particular case, is evaluated in the following section.
40t 4

B ' ) 5. EVALUATION OF THE NUMBER OF EXCITED

3ol 1 TERMS
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The BPSK sequence witkR = 1 and f, = 0.25 can be
expressed ag, = +1 cos(kw/2). This sequence contains
three distincts values1 and O.

T T I iEi I [ I : 5.1. Volterra filter

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Reduced carrier frequencies : 10 Using this remark we can evaluate the number of excited
terms of the Volterra filter. Laty, (D = 2) andpy, (D = 3)
respectively be the number of excited terms for a second and
third polynomial order of the Volterra filter. These expres-
sions can be defined as the following form :

20+ 1

151 q

Figure 2: Number of distinct values of the BPSK input se-
guence versus the reduced carrier frequency.

The number of distinct values is comprised between 3 0 D=2 .
levels for f, = 0.25 and 50 levels forfy, = 0.09, fo = 0.13 * Mg EVen.
and fo = 0.19. The number of distinct values also plays a oL (D =2) 2 (%)2 N m, o
role in the number of excited terms of the Volterra filter. v 2 D)



Number of excited terms : D=2 Number of excited terms : D=3
500 T T T 5000 T T T

4501 A 45001

4 4000
+—+ PE sequence +—+ PE sequence
6—>o BPSK sequence 1 3500 6—>o BPSK sequence

30001

25001

2000

1500

1000

500

Figure 4: Number of parametepsto be estimated fob = Figure 5: Number of parametes§m, ) to be estimated for
2. D =3.
e m, 0dd: wheree,, is the prediction error sequence and is the
m m 9 memory length prediction sequence.
py (D = 2) 2 (=) + =+~ A second order NARMAX model without prediction error
2 2 4 sequence is described by
0 D=3 me—1 my My —1 My
* My EVEN . Yk = Y aikoit Y bkt Y Y CiThoilk;
A md 20 i=0 j=1 i=0 j=1
p,V(D = 3) = Q_Z + ﬂmz +2 my—1Ma—1 my my
+ Z Z dijT_iTp—_j + Zzeijykfiykfj
e m, odd: i=0 j=0 i=1 j=1
3923 The number of parameters of this model is
p@(DzB)é%+ﬂmm+2 P

1
i - PN = Mg + my + memy + = (my +my +m2 +m?)
Figures 4 and 5, respectively = 2 andD = 3, show N Y 2 Y ‘ Y .
the evolution of the number of excited terms (i.e. num- @

ber of parameters to be estimated) when the memorylengtr]:Or high order NARMAX filter, the number of terms in-

My, Varies o, = 1,... ,30) for the BP.SK Input sequence creases dramatically and this induces numerical problems.
(fo = 0.25 andR = 1) and for a PE input sequence us-

ing Eq. (3). The BPSK input sequence allows to reject a o
lot of terms of the Volterra filter because only few terms are ~ 9:2.2. Definition

excited (due to some aliasing in the model structure). For\ye can evaluated the expressions of the accurate number of

m, = 30 andforD = 2 (D = 3) only 242 terms (1152 o ijteq terms of the NARMAX filter using a similar proce-
terms) are excited for a initial base composed of 495 termsy -« Letp!, (D = 2) andpy(D = 3) respectively be the

(5455 terms). number of excited terms for a second and third polynomial
order of the NARMAX filter. These expressions take the
5.2. The NARMAX filter following form :
5.2.1. Input/Output relationship 0D=2
The NARMAX filter is a general parametric filter (including e mg Even .

Volterra and bilinear models) [8]. This filter is defined by (mx . My

J— _'_ J—
f— DR DR 2 2

Y = f(yk—h yYk—my > Lk y Tk—my (my + ]-)my

kal,"',ﬁkfmc)-f‘ﬁk 2

>

+2+my +mym,



A M m 9
p;V(DZQ) = (Tz)2+7w+1+my+mymw
(my + 1)m,
2
0 D=3
e m, even:
3
/ _ A My 0 (3 +my)!
(my + Dmy Mayy  Ma
+mg 5 + my (( 2) 5 +2)
e m, odd
3
/ _ A my | 23 (3 +my)!
pN(D—3) = ﬁ—l—ﬂmx%—Q—l—s!Ty!—l—mzmy
(my + Dmy May>  Me | 9
+my 5 +mﬂ(2) 5 +4)

Note that the generalization for high polynomial order
of the Volterra and NARMAX filter is not straigthforward.
It's worthwhile noticing that when the memory length,
of the Volterra and NARMAX filter increases, the reduction
of the number of initial terms is far more important.

5.3. lllustrative examples

EXAMPLE n°1 : lety, = z + 0.223_, — 0.3z_12), —
0.3z% | be the non linear Input-Ouput relationship of an

unknown structure. In a first step, we identify this system [3] S.A. Bilings and W. S. Voon.
by a 3-level RMS PE input sequence and in the same time

with a BPSK non PE input sequence both using a= 2
andm, = 2 Volterra filter. This Volterra filter contains five
terms : [zy, zp—1, 23, 25 |, zrzr—1]. Note that the cubic
termz; | of Input-Ouput relationship is not represented in
this Volterra filter. Only 4 terms are excited by the BPSK
input sequence [z, zx_1, 7%, Th_,].

In a second step two new input sequences are gener-
ated (RMS and BPSK) in order to compare the PE and non

PE \olterra filter identification. A commonly measure of
identification error is the normalized mean square eftor
defined by
= im0 = vi)?
7‘ —_ L—z.
>ic1 Vi

One sequence is used for the identification of this system
and 50 realizations are used to compute the normalized mean

square error.

We obtainEr = +7 dB for the PE input sequence and
Er = —33 dB for the non PE input sequence. This big
difference of performance is due to the fact that itje

term is equivalent to the, _; term for the BPSK input se-
quence, so this term is contained in the minimal Volterra
filter (4 terms).

EXAMPLE n°2 : letyy = zf +0.2zp—2 — 0.1z_1y;
be the non linear Input-Ouput relationship of an unknown
structure. The cross-termy,_,y7_, is not represented by
the \Volterra filter (n, = 2 andD = 2). We obtainEr =
—8.9 dB for the RMS sequence ant- = —14.1 dB for
the BPSK sequence. Best identification results are obtained
by the non PE sequencAEr = 5 dB).

6. CONCLUSION

An alternative method of the classical polynomial filter iden-
tification is proposed for some specific applications where
the input sequence has the same properties than the refer-
ence sequence used for the identification of the unknown
system : it is the case for the jammer application.

New formulae have been evaluated to compute the accurate
number of the excited terms for a particular BPSK sequence
for the Volterra and NARMAX filters.
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