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ABSTRACT

This paper presents an original approach for nonlinear Volterra
and NARMAX filter identification. We propose here to use
a non persistent excitation of input sequence to excite few
terms of the Volterra and NARMAX filter, which must sat-
isfy a set of physical constraints. Expressions have been de-
velopped to evaluate the accurate number of excited terms
of the Volterra and NARMAX filter.

1. INTRODUCTION

The necessary characteristics required for linear filter iden-
tification are well understood [1]; however, the requirements
for nonlinear filter excitation have not been yet studied in
great details.
This paper deals with input signals for the identification of
nonlinear discrete time systems via a Volterra and a NAR-
MAX (Nonlinear Autoregressive Moving Average model
with eXogenous inputs) filter. The Volterra filter is attractive
because it is a straightforward generalization of the linear
system description and the behaviour of many physical sys-
tems can be described with a Volterra filter [2]. In a similar
manner, the NARMAX filter can, by including information
from both lagged inputs and outputs, provide a very concise
representation for nonlinear physical systems [3].

It has been shown in [2] that the q-level RMS (Random
Multilevel Sequence) input sequence guarantees the persis-
tence of excitation (PE) condition of the Volterra filter with
nonlinearities of orderD with q > D + 1. Unfortunately
for a high order Volterra and NARMAX filter, the increas-
ing number of terms leads to a ill-conditioned data matrix
(presented in section 2.).

A recent approach developped in [4] and [5] uses a non
PE input sequence for Volterra filter identification. The goal
of this approach is to use a input sequence which excite as
few as possible terms of the Volterra filter (section 3. and
4.), and so the number of parameters of the Volterra filter to

be estimated is reduced. Moreover, this approach has been
successfully validated on real underwater sonar signals for
a nonlinear Jammer application [6].

The contribution of this paper is to extend this approach
for the NARMAX filter and to define expressions which
evaluate the accurate number of excited terms of these com-
pact Volterra and NARMAX filters for a particular BPSK
sequence (section 5.). Illustrative examples are also pro-
posed in this section.

2. PERSISTENCE OF EXCITATION CONDITION
FOR THE VOLTERRA FILTER

2.1. Volterra filter

The discrete-time invariant Volterra filter with memory length
mx and order of nonlinearityD, with L samples, is defined
by

yk
4
=

DX

i=1

mx�1X

j1;��� ;jn=0

hi(j1; � � � ; jn)xk�j1 � � �xk�jn (1)

or with a matrix representationyk = Xk� + �k, where
yk = [yk; � � � ; yk�L+1]

t is the observed output sequence
associated with the input sequencexk, � is the vector of the
Volterra parameters and�k is a noise sequence andXk is

the (L�p) data matrix defined byXk
4
= [xk; � � � ; xk�L+1]t

with

xk
4

= [xk�j1 xk�j1xk�j2 : : : xk�j1xk�j2 : : : xk�jD ]t

for j1; : : : ; jD = 0 : : :mx � 1.

If Xt

kXk is full rank, then the least squares estimate of the
filter parameters is given by

�̂ = (Xt

kXk)
�1Xt

kyk (2)

The number of unique products in Eq. (1) is given by

pV =
(D +mx)!

D!mx!
� 1 (3)



ForD = 3, mx = 14 pV = 679.

2.2. Persistence of excitation condition

Once, the Volterra parameters of the system described in Eq.
(1) are identified, the PE condition can be defined as in [2]
by :

Definition 1 Assume that the sequencexk is a stationary
random process. If the correlation matrixRx of the Volterra
filter

Rx
4
= E[xkxt

k] (4)

exists and is nonsingular, then the input sequencexk is said
to be PE of degreemx and orderD.

The RMS input signal is usually used as a PE sequence be-
cause the RMS sequence defined below satisfy the PE con-
dition if q � D + 1 [2]

Definition 2 Let xk be an i.i.d. sequence which takes on
a finite number of distinct valuesl1; l2; � � � ; lq with corre-
sponding probabilitiesp1; p2; � � � ; pqPq

i=1 pi = 1. Thenxk is called a q-level RMS,

However for high order Volterra filters the increasing num-
berpV leads inevitably to a ill-conditioned matrixRx . Di-
rect inversion of the data matrixXt

kXk becomes numer-
ically ill-posed. To reduce this numberpV , an alternative
solution is proposed with a non persistence of excitation in-
put sequence.

The originality of this approach is to use a cyclosta-
tionnary Binary Phase Shift Keying (BPSK) input sequence
which takes a finite number of distinct values. This se-
quence doesn’t respect the PE condition because it’s not an
i.i.d. sequence. Moreover this BPSK sequence excite few
terms of the Volterra filter.

3. NON PERSISTENCE OF EXCITATION INPUT
FOR THE VOLTERRA FILTER

This approach proposes a BPSK input sequence which al-
lows to reject Volterra filter terms by the evaluation ofRx ;
a minimal filter is constructed with only the excited terms.

3.1. The BPSK input sequence

The BPSK signal is a cyclostationary signal (see [7] for its
properties). Taking the sampling frequency as an integer
multiple of the baud rate of a continuous BPSK signal, the
discrete-time BPSK signalxk is expressed as

xk =
1X

m=0

amp(k �mR) cos(2�f0k) k = 0; 1; 2 : : :

(5)

whereR corresponds to the number of points per keying in-
terval,f0 is the reduced carrier frequency,famg is an i.i.d.
sequence equal to�1 andp(k) is the rectangular pulse such
thatp(k) = 1 for k = 0; : : : ; R� 1 and 0 otherwise.

3.2. Extension of the definition of the correlation matrix

In order to obtain the minimal Volterra filter, we must extend
the definition of the correlation matrix for an asymptotically
stationary sequence [4],

Rx
4
= lim

T!1

1

T

T�1X

l=0

E[x l+kxt

l+k] (6)

The excited terms of the Volterra filterx 0k (dim(x 0k)�dim(xk))
correspond to a full rank sub-matrixRx 0 . The theoretical
calculation of this correlation matrix has been studied in the
white case in [4] and for all BPSK sequences in [5].

3.3. Construction of the minimal Volterra filter

In order to evaluate the minimal Volterra model the follow-
ing procedure is used :

1. the correlation matrixRx for a cyclostationary BPSK
sequence is computed,

2. the rank ofRx allows to determine a parsimonious
vectorx 0k which only takes terms ofxk associated to
non zero eigenvalues ofRx ,

3. the reduced correlation matrixRx 0 is now full rank
and the minimal Volterra model is given by thex 0k
terms. The evaluation ofx 0k is computed iteratively.

4. INFLUENCES OF THE CARRIER FREQUENCY

In the sequel the input sequence is assumed to have a large
bandwidth.

4.1. Frequency representation

Signal BandwidthB of the BPSK input sequence is in-
versely proportional toR (forR = 1, BPSK signal is white).

To generate a BPSK sequence withB = 2 �f (B 2
[f1��f ; f1+�f ]) centered on the frequencyf1, we must
takeR = 1=�f andf0 = f1. Figure 1 represents the power
spectral density of the BPSK sequence forf0 = f1 = 0:20
and forR=1, 5 and 10.

We can now show the infuence off0 on the finite num-
ber of distinct values of the sequence.
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Figure 1: Frequency representation of a BPSK sequence :
f0 = 0:2.

4.2. Number of distinct values of the BPSK input se-
quence

The finite number of distinct values of the BPSK input se-
quence is directly dependent of the carrier frequency. Fig-
ure 2 represents the evolution of the number of levels of
the sequence whenf0 varies and takes the following values
f0 = 0:01; : : : ; 0:49.
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Figure 2: Number of distinct values of the BPSK input se-
quence versus the reduced carrier frequency.

The number of distinct values is comprised between 3
levels forf0 = 0:25 and 50 levels forf0 = 0:09, f0 = 0:13
andf0 = 0:19. The number of distinct values also plays a
role in the number of excited terms of the Volterra filter.

4.3. Relationship between the number of distinct values
and the number of excited terms of the Volterra filter

Figure 3 shows the evolution of the number of excited terms
when the number of points per keying interval (R) increases
and for three differents carried frequencies, using the proce-
dure described inx3.3. We can see that best performances
are obtained withf0 = 0:25 (3 levels) and withf0 = 0:20
(6 levels).
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Figure 3: Number of excited terms of a Volterra filter versus
the keying interval. Volterra filterD = 3 andmx = 14 :
679 initial terms

For R = 1 the BPSK input sequences are white. The
white BPSK input sequence withf0 = 0:25 (3 levels) cor-
responds to the more efficient non PE sequence (see figure
3). The number of terms of the minimal Volterra filter, in
this particular case, is evaluated in the following section.

5. EVALUATION OF THE NUMBER OF EXCITED
TERMS

The BPSK sequence withR = 1 andf0 = 0:25 can be
expressed asxk = �1 cos(k�=2). This sequence contains
three distincts values�1 and 0.

5.1. Volterra filter

Using this remark we can evaluate the number of excited
terms of the Volterra filter. Letp0V (D = 2) andp0V (D = 3)
respectively be the number of excited terms for a second and
third polynomial order of the Volterra filter. These expres-
sions can be defined as the following form :

➊ D = 2
�mx even :

p0V (D = 2)
4
= (

mx

2
)2 +

mx

2
+ 2



0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500
Number of excited terms : D=2

Memory

PE sequence 
BPSK sequence

Figure 4: Number of parametersp0 to be estimated forD =
2.

�mx odd :

p0V (D = 2)
4
= (

mx

2
)2 +

mx

2
+

9

4

➋ D = 3
�mx even :

p0V (D = 3)
4
=

m3
x

24
+

20

24
mx + 2

�mx odd :

p0V (D = 3)
4
=

m3
x

24
+
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24
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Figures 4 and 5, respectivelyD = 2 andD = 3, show
the evolution of the number of excited terms (i.e. num-
ber of parameters to be estimated) when the memory length
mx varies (mx = 1; : : : ; 30) for the BPSK input sequence
(f0 = 0:25 andR = 1) and for a PE input sequence us-
ing Eq. (3). The BPSK input sequence allows to reject a
lot of terms of the Volterra filter because only few terms are
excited (due to some aliasing in the model structure). For
mx = 30 and forD = 2 (D = 3) only 242 terms (1152
terms) are excited for a initial base composed of 495 terms
(5455 terms).

5.2. The NARMAX filter

5.2.1. Input/Output relationship

The NARMAX filter is a general parametric filter (including
Volterra and bilinear models) [8]. This filter is defined by

yk = f(yk�1; � � � ; yk�my
; xk; � � � ; xk�mx

;

�k�1; � � � ; �k�m�
) + �k
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Figure 5: Number of parametersp0(mx) to be estimated for
D = 3.

where �k is the prediction error sequence andm� is the
memory length prediction sequence.
A second order NARMAX model without prediction error
sequence is described by

yk =

mx�1X

i=0

aixk�i +

myX

j=1

bjyk�j +

mx�1X

i=0

myX

j=1

cijxk�iyk�j

+

mx�1X

i=0

mx�1X

j=0

dijxk�ixk�j +

myX

i=1

myX

j=1

eijyk�iyk�j

The number of parameters of this model is

pN = mx +my +mxmy +
1

2
(mx +my +m2

x +m2
y)

(7)

For high order NARMAX filter, the number of terms in-
creases dramatically and this induces numerical problems.

5.2.2. Definition

We can evaluated the expressions of the accurate number of
excited terms of the NARMAX filter using a similar proce-
dure. Letp0V (D = 2) andp0N (D = 3) respectively be the
number of excited terms for a second and third polynomial
order of the NARMAX filter. These expressions take the
following form :

➊ D = 2
�mx even :

p0N(D = 2)
4
= (

mx

2
)2 +

mx

2
+ 2 +my +mymx

+
(my + 1)my

2
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4
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x
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2
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�mx odd :
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4
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m3

x
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+
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2
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2
+

9
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Note that the generalization for high polynomial order
of the Volterra and NARMAX filter is not straigthforward.
It’s worthwhile noticing that when the memory lengthmx

of the Volterra and NARMAX filter increases, the reduction
of the number of initial terms is far more important.

5.3. Illustrative examples

EXAMPLE n�1 : let yk = xk + 0:2x2k�1 � 0:3xk�1xk �
0:3x3k�1 be the non linear Input-Ouput relationship of an
unknown structure. In a first step, we identify this system
by a 3-level RMS PE input sequence and in the same time
with a BPSK non PE input sequence both using aD = 2
andmx = 2 Volterra filter. This Volterra filter contains five
terms : [xk ; xk�1; x2k; x

2
k�1; xkxk�1]. Note that the cubic

termx3k�1 of Input-Ouput relationship is not represented in
this Volterra filter. Only 4 terms are excited by the BPSK
input sequence :[xk ; xk�1; x2k; x

2
k�1].

In a second step two new input sequences are gener-
ated (RMS and BPSK) in order to compare the PE and non
PE Volterra filter identification. A commonly measure of
identification error is the normalized mean square errorEr
defined by

Er =

PL

i=1(ŷi � yi)
2

PL
i=1 y

2
i

:

One sequence is used for the identification of this system
and 50 realizations are used to compute the normalized mean
square error.

We obtainEr = +7 dB for the PE input sequence and
Er = �33 dB for the non PE input sequence. This big
difference of performance is due to the fact that thex3k�1

term is equivalent to thexk�1 term for the BPSK input se-
quence, so this term is contained in the minimal Volterra
filter (4 terms).

EXAMPLE n�2 : letyk = xk+0:2xk�2�0:1xk�1y
2
k�1

be the non linear Input-Ouput relationship of an unknown
structure. The cross-termxk�1y2k�1 is not represented by
the Volterra filter (mx = 2 andD = 2). We obtainEr =
�8:9 dB for the RMS sequence andEr = �14:1 dB for
the BPSK sequence. Best identification results are obtained
by the non PE sequence (�Er = 5 dB).

6. CONCLUSION

An alternative method of the classical polynomial filter iden-
tification is proposed for some specific applications where
the input sequence has the same properties than the refer-
ence sequence used for the identification of the unknown
system : it is the case for the jammer application.
New formulae have been evaluated to compute the accurate
number of the excited terms for a particular BPSK sequence
for the Volterra and NARMAX filters.
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