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ABSTRACT
More than 20 years ago it was shown that adaptive Volterra

filters can be used for telephone echo cancellation, but the
inherent need for a large number of coefficients has inhib-
ited their practical use. Recently, first attempts have been
made to combat nonlinearities in the acoustic echo path of
hands-free telephones, which are caused by low-cost audio
components. As these attempts are based on a memoryless
nonlinear model, they are constrained to saturation effects,
which can not describe the nonlinear behavior of small loud-
speakers accurately enough. In this contribution, we report
real time measurements with an adaptive Volterra filter. At
first, we verify that loudspeaker nonlinearities encountered
in the echo path of hands-free telephones have to be mod-
elled with memory. Based on these results, we propose an
adaptive Volterra filter structure with a reduced number of
coefficients. The new structure is experimentally compared
to echo cancellers with a memoryless nonlinear model us-
ing a real acoustic echo cancelling setup with a small loud-
speaker. With the new technique, an echo reduction im-
provement of 7 dB over conventional linear adaptive filters
is achieved. Furthermore it is shown that the proposed adap-
tive Volterra filter structure outperforms the memoryless ap-
proaches.

1. INTRODUCTION

The typical setup for acoustic echo cancellation is shown in
Fig. 1. The microphone signaly[k] contains the linear echo
d[k] = x[k] � h[k] and additional signal componentsn[k].
Given a linear echo path, the echo can be cancelled by a
linear adaptive filter̂h[k], and only the local signaln[k] is
transmitted. In low-cost consumer products the loudspeaker
signal may contain a certain level of nonlinear distortions,
e.g. 20 dB below the signal level, without annoying the local
telephone subscriber. This is because thenonlinear signal
components are masked by the linear ones, and small distor-
tions in speech signals are commonly accepted by telephone
customers.

Now consider the case wheren[k] also contains non-
linear echo components, and the linear adaptive filterĥ[k]
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Figure 1: linear adaptive filter for acoustic echo cancellation

(Fig. 1) has converged. As it can not cancel the nonlinear
echo components, the far end subscriber will hear a highly
distorted echo. Consequently the required echo reduction
of 30 - 45 dB [1] can not be reached in most hands-free
telephone configurations. Therefore, additional adaptation
measures have to cancel these echo components. These
measures depend on the kind of nonlinearities encountered
in the transmission chain shown in Fig. 2.
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Figure 2: nonlinear echo path

The main source of nonlinearities is found in part (B),
since the loudspeaker and the power amplifier are operated
at the highest signal level of the transmission chain. This
part of the system is assumed to be weakly time-variant,
e.g. due to temperature drift. The acoustic echo path (C)
is known to be linear and time-variant, while the micro-
phone and the amplifier (C) can be modeled as LTI systems
because of their low signal amplitudes. Also the nonlin-
ear quantization of the A/D and D/A converters can be ne-
glected in this context.

If nonlinear distortions are mainly caused by an over-
driven amplifier, they are approximately memoryless and
can be modeled by a saturation curve [2, 3]. Two existing
approaches, which are specialized on this type of nonlinear-



ity, are discussed in Sec. 2.
Another kind of nonlinearity is caused by the loudspeaker

[4], especially when it is operated at its power limit. Due
to the long time constants of the electro-mechanical sys-
tem, the memory of this nonlinear behaviour cannot be ne-
glected, as our measurements in Sec. 3 confirm. To com-
bat this type of nonlinearity, adaptive systems with memory
are required. A time-delay neural network, being such a
system, is proposed in [5]. With a cascade of a time-delay
neural network and an adaptive FIR filter, considerable im-
provement of nonlinear echo reduction is achieved. A dis-
advantage is the need for a second reference microphone to
provide an error signal for the adaptive neural network. In
[6] adaptive Volterra filters have been proposed for line echo
cancelling. However, due to their high numerical complex-
ity they have not been used in practical systems yet. In this
paper, we develop an acoustic echo canceller with a sec-
ond order adaptive Volterra filter and propose a method that
keeps the computational complexity modest.

Before we propose a new echo canceller and point out
its computational complexity in Sec. 3, Volterra filters are
reviewed and some aspects for their application to acoustic
echo cancellation are discussed. All mentioned echo can-
cellers are compared in Sec. 4 using a real echo path with a
small loudspeaker operated at its power limit.

2. MEMORYLESS NONLINEAR MODEL

Acoustic echo cancellers consisting of a cascade of linear
systems and memoryless nonlinear systems have already
been proposed. In [3], parts (A) and (C) of Fig. 2 are mod-
elled with adaptive FIR filters withNA andNC coefficients,
respectively, and part (B) is realized by a saturation curve
with one adaptive parameter. The adaptation of part (A)
costsO(NA � NC) multiplications, which for typical val-
ues ofNA = 20 is computationally very demanding. Con-
vergence problems due to local minima of the error surface
can be circumvented by a special inititalization procedure,
if the impulse response of part (A) has a dominant peak. For
this case as much as 8 dB ERLE improvement over a linear
adaptive filter are reported.

A system with non-adaptive nonlinearity [2] models part
(A) in Fig. 1 as a delay, part (B) by a 7-th order polynomial,
and part (C) as a classical NLMS adaptive filter. With ne-
glectable additional effort (14 multiplications per sample)
an ERLE improvement of 4 dB is obtained, without affect-
ing convergence properties of the adaptive filter.

Experiments in Sec. 4.1 show, that both systems obtain
their good results only if the major cause of nonlinearities
is a clipping amplifier. In many non-portable applications,
like PC telephones or videophones, the power amplifier is
not necessarily overdriven, but it is still desirabe to oper-
ate a small, cheap speaker at its power limit. With such an

echo path the systems [3] and [2] do not achieve remarkable
ERLE improvements (see Sec. 4.2). This shows the need
to develop another kind of nonlinear echo canceller which
is appropriate for systems with loudspeaker nonlinearities.
We will do this in the next section.

3. ADAPTIVE VOLTERRA FILTERS FOR
ACOUSTIC ECHO CANCELLING

The huge number of coefficients of Volterra filters with long
memory inhibits their practical use for acoustic echo can-
cellation, unless special precautions are taken. This sec-
tion discusses some of the pitfalls to watch out for in the
practical application of adaptive Volterra filters to nonlin-
ear acoustic echo cancellation. After reviewing adaptive
Volterra Filters in Sec. 3.1, we discuss two approaches for
adaptation stepsize normalization. Then in Sec. 3.3 the re-
quired memory length is examined, resulting in a consid-
erable complexity reduction. Finally in Sec. 3.4 an echo
cancelling structure with a second order Volterra filter and
modest computational complexity is proposed.

3.1. Basics

AnN -th order discrete Volterra filter with inputx[k], output
y[k] and memory lengthM can be described as

y[k] = h0 +
NX

r=1

MX

�1=0

� � �
MX

�r=�r�1

hr[�1; � � � ; �r] �

�x[k� �1] � � �x[k � �r] ; (1)

wherehr are ther-th order Volterra kernels [9]. Such a fil-
ter can be adapted by the same algorithms as linear filters
[6]. Because of itsgood tracking behaviour in an acoustic
echo cancelling context [10] we employ the NLMS algo-
rithm for our experiments. [8] shows that Volterra kernels
are symmetric, which is exploited in (1) by considering only
coefficients with non-decreasing indices�r, i.e.�r � �r�1.
With the vectors

x1[k] = (x[k]; x[k� 1]; � � � ; x[k�M + 1])

ĥ1 =
�
ĥ1[0]; ĥ1[1]; � � �; ĥ1[M � 1]

�

for the first order Volterra kernel, and

x2[k] =
�
x2[k]; x[k]x[k� 1]; � � � ; x[k]x[k�M + 1];
x[k� 1]x[k� 1]; � � � ;
x[k�M + 1]x[k�M + 1]

�

ĥ2 =
�
ĥ2[0; 0]; ĥ2[0; 1]; � � �; ĥ2[0;M � 1];

ĥ2[1; 1]; � � �; ĥ2[M � 1;M � 1]
�

for the second order Volterra kernel, a second order LMS
adaptive Volterra filter can be formulated as

e[k] = y[k]� ĥ0[k]� ĥ1[k]x1
T [k]� ĥ2[k]x2

T [k] (2)



ĥ0[k+ 1] = ĥ0[k] + �0 e[k] (3)

ĥ1[k+ 1] = ĥ1[k] + �1 e[k]x1[k] (4)

ĥ2[k+ 1] = ĥ2[k] + �2 e[k]x2[k] (5)

3.2. Normalization of adaptation stepsize

Consider a linear LMS adaptive FIR filter, consisting only
of h1 andx1. It has been proven that this algorithm con-
verges for�1 < 2

kx1k22
[7]. Therefore it is straightforward

to normalize the LMS adaptive Volterra filter using�1 =
�2 < �

kx1k22+kx2k
2

2

, where convergence can be proven for
0 < � < 2 in a similay way.

A disadvantage of this kind of normalization becomes
obvious, if e.g. for a second order Volterra filterkx1k22 �
kx2k22. Then the coefficientsh2[k] are updated in very small
steps which severely slows down the second order kernel
convergence. However, in [9] the LMS adaptive Volterra
filter is formulated with different stepsize for each kernel,
which motivates us to suggest a separate normalization for
first and second order kernel:

�1 =
�1

kx1k22
(6)

�2 =
�2

kx2k22
(7)

Experiments showed safe convergence with this normal-
ization only for second order systems, which can be ex-
plained by the orthogonality of first and second order ex-
citations.

3.3. Memory length of higher order kernels

The memory length of the Volterra kernels is determined by
the whole transmission chain in Fig. 2, which it is typically
several hundred taps for acoustic echo cancellers. Due to
the complexity ofO(MN ), the memory length of the higher
order Volterra kernels must be much less in a practical appli-
cation. For analog audio systems the envelope of the higher
order kernels is determined by the envelope of the impulse
response [11], which typically has a dead zone followed by
a peak, and then exponentially decays. We verified this as-
sumption for an acoustic echo path with a highly excited
small loudspeaker in a room with short reverbaration time.
Fig. 3 shows the first 50 taps of the first order kernel, i.e.
the impulse response, and Fig. 4 shows the second order
kernel, both obtained by an NLMS adaptive second order
Volterra filter withM = 50. The zero elements in the upper
half of Fig. 4 have not been used for symmetry reasons. As
its coefficients have relatively smaller values than the linear
impulse response, the second order kernel may be truncated
to shorter memory length than the linear kernel causing the
same error power in the output signal.
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Figure 3: Linear FIR system with memory length 50
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Figure 4: Second order Volterra kernel adapted from a small
loudspeaker

3.4. Proposed structure

As experiments with higher orders Volterra filters without
orthogonalization yielded only marginal improvements in
terms of echo reduction, we propose a second order Volterra
filter. Fig. 4 suggests to truncate the first elements of the
second order Volterra kernel until near the first peak in both
dimensions, i.e.�1 � �; �2 � �. In the example of Fig. 3
and Fig. 4 a good choice would be� = 17. This leads to a
modified second order Volterra representation with different
memory lengthM1 andM2:

y[k] = h0 +

M1�1X

�=0

h1[�]x[k� �] +

M2+��1X

�1=�

M2+��1X

�2=�1

h2[�1; �2]x[k� �1]x[k� �2] :

(8)
An adaptive Volterra filter of the above kind is shown

in Fig. 5. The NLMS coefficient update for the linear fil-
ter is performed according to (4) using the normalization
(6). The DC coefficient adaptation is given in (3), and the
second order kernel is adapted using (5), where the vec-
tor ĥ(tr)2 [k] is the truncated second order Volterra kernel.
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Figure 5: New nonlinear acoustic echo canceller

Its elements are equivalent to those ofĥ2[k] with indices
� � �1; �2 < �+M2. As the DC component of the input
signal is correlated with the second order excitation, nor-
malization for these two components is performed in com-
mon, i.e.

�0 = �2 =
�2

kx2[k]k22 + 1
(9)

where the1 in the denominator accounts for the DC com-
ponent and can be omitted, if no DC coefficient is imple-
mented.

4. EXPERIMENTAL RESULTS

The new system has been tested with different low cost
speakers between0:1 and0:4 Watts and a one-chip ampli-
fier placed in an enclosure with low reverberation. As exci-
tationx[k] white Gaussian noise was used. The amplitude
was chosen so that the amplifier is not highly overdriven and
loudspeaker nonlinearities dominate over saturation effects.
We compare different nonlinear echo cancelling approaches
with a linear adaptive filter in terms of the Echo Return Loss
Enhancement

ERLE=
Efy2[k]g

Efe2[k]g
:

The steady-state ERLE of the linear filter is a coarse mea-
sure of the nonlinear distortion ratio within the loudspeaker
signal, which is percieved by the near-end user in the local
room.

4.1. Systems with memoryless nonlinearity

The behaviour of the systems described in Sec. 2 is com-
pared for two situations: in Fig. 6 the nonlinearity in the
echo path contains mainly saturation effects due to a low-
ered amplifier supply voltage. As the linear adaptive fil-
ter (1) can reduce the echo only by 15 dB, the nonlinear
distortions contained in the loudspeaker signal are at about

-15 dB, i.e. they are well audible, but might be just tolera-
ble for low cost applications. For this type of nonlinearity
both schemes allow a further echo reduction by 4-5 dB, see
curves (2) and (3).
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Figure 6: Saturation effect: Memoryless nonlinearity is ap-
propriate model

In Fig. 7 the amplifier was not overdriven, and therefore
loudspeaker nonlinearities dominate. In this case the mem-
oryless nonlinear echo cancellers (2) and (3) do not improve
the echo reduction compared to a linear adaptive filter (1).

4.2. Adaptive Volterra Filter

Fig. 7 shows a comparision between a conventional linear
acoustic echo canceller with NLMS algorithm (1) withM1 =
250 coefficients, both memoryless nonlinear echo cancellers
(2) and (3), and the new system (4) with� = 17, M2 =
25. The additional computational load of the second order
Volterra kernel is32M2

2 + 3
2M2 + 2, if symmetry is ex-

ploited, while the linear NLMS adaptive filter costs2M1+2
multiplications per sample. In our example we have 977 ad-
ditional multiplications/sample due to the 2nd order kernel,
while the linear filter costs 502 multiplications/sample.
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Figure 7: Loudspeaker nonlinearity: 2nd order Volterra fil-
ter is suitable

Comparing curves (1) and (4) shows, that convergence
speed is not lowered through the additional second order
kernel, and steady state ERLE is 5 dB higher. With larger
memoryM2 = 35 up to7 dB can be gained.



4.3. Effect of a DC offset in the microphone signal

Ofteny[k] or x[k] have a small DC offset due to A/D con-
version. Here we discuss the need for an adaptive DC co-
efficienth0, and claim that for a fair comparision between
linear and nonlinear adaptive filters the DC components of
x[k] andy[k] have to be removed.

The following experiment has been performed with the
same setup as above, but a small DC offset, which origi-
nally occured iny[k], has not been removed. Fig. 8 shows
that the performance of the linear filter is degraded through
the DC offset, and only 25 dB ERLE can be reached. How-
ever, if an adaptive DC coefficient is addded to the system,
i.e. we adapth0 andh1 in parallel, this problem can be
circumvented, and the expected 28 dB ERLE are reached,
as with the linear filter in Fig. 7. The upper two curves in
Fig. 8 result with a 2nd order Volterra filter. They show that
the use of an adaptive DC coefficienth0 does not signifi-
cantly improve the model acuracy. From this we conclude,
that a second order Volterra filter can model a DC compo-
nent to a certain extent, and therefore an additional adaptive
DC coefficienth0 is not required in the nonlinear echo path
model.

0 1 2 3 4 5
5

15

25

35

time [seconds]

E
R

LE
 [d

B
]

no DC coeff.  
with DC coeff.

Figure 8: Apative echo cancellation with and without DC
adaptive coefficient

Further we can see, that it is important to exclude the
effects of a possible DC offset inx[k] andy[k], if a second
order adaptive Volterra filter is compared to a linear adap-
tive filter in the context of second order loudspeaker non-
linearities. Otherwise we would measure a higher ERLE
difference than could be gained by modelling second order
nonlinearities of a loudspeaker. To ensure a fair compari-
sion in the experiments of Sec. 4.1 and 4.2, we therefore
removed any DC offset in the signalsx[k] andy[k].

5. SUMMARY

The performance of linear acoustic echo cancellers is lim-
ited by nonlinear components in the echo path. Existing
acoustic echo cancellers for memoryless nonlinearities are
specialized for saturation effects and cannot model loud-
speaker nonlinearitiesaccurately enough. We showed that

a second order adaptive Volterra filter is suitable for echo
cancellation in such cases, and a DC coefficient needs not
to be incorporated into the model, even if there is a small
DC offset in the microphone signal. Two normalization
schemes for the LMS algorithm have been discussed, and
a design rule for the choice of the relevant coefficients was
proposed to reduce the computational load. Practical im-
plementations of systems with different small loudspeakers
operated at their power limit have been investigated. For
situations, where memoryless nonlinear models could not
improve echo reduction, the new system achieves an echo
reduction gain up to 7 dB over linear adaptive filters. With
only modest computational load, moer than 5 dB are gained.
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