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ABSTRACT : using the recursive prediction error algorithm

[2] with the Extended Kalman filter will be

In this paper we present an adaptive recursivegiatad.
nonlinear filter based on the higher order _ .
Volterra series infinite impulse response (IIR) 2.General adaptive IIR Volterra filters:

structure. The proposed work is an extension ofthe general discrete NARMA [1] [3] [7] model

the work of Roy et al [9] in which they limit the 5 defined by:
Volterra recursive filter to the second order. ©
Adaptive algorithms based on the exact and the y(n) = Zanlx(n—nl) +
approximate gradient will be derived. Stability n=
issues based on the Extended Kalman Filter will & & o -
be discussed. Simulations results highlight the Zozba"l”zx(n_nl)x(n_%)+'+nZMZD‘”
usefulness of the proposed algorithms. = ° s
Improvement on the convergence and stability Z B X(N=N)X(N=1,)..X(N=n,) +
behavior will be evaluated. =0 ’

1. Introduction by, y(n—m,) + Zmelmz y(n-m,)y(n-m,)
Over the last decade, Volterra filters (FIR) or ™= M=1Mmp=1
polynomial filters [6] and nonlinear adaptive > 2
infinite impulse-response (lIR) filters have been Tt Z Z'“melmz'"%
appealing areas of research and have been ™ = "'
considered in many real world applications y(n-m)y(n-m,)..y(n-m,)
[12][1]. While Volterra filters have been applied © o
in many applications they still present some +Zozcnlmlx(”‘”1)>’(n—ml)+ -----
limitations because of their computational — * ml;l o
complexity which increases exponentially with 4 <
the filter order [9]. As an alternative to using anO an; ,;1 Cn-nymims -~y
these filters Roy et al in [9] proposed recursive yin_n ). x(n—n_)y(n-m)..y(n-m,)
second-order polynomial filters in their study ' P d
which is limited to the second order. In this
paper we shall consider higher order recursive .
polynomial filters and shall develop the

1)

where x(n) represents the discrete input
signal,y(n) is the discrete recursive output

corresponding  adaptive  gradient based Signal. Note here that the memory of the

algorithms. In the second part of this paper recursive and the non recursive parts is infinite.
in

stability issues of the recursive polynomial filter However for computational purposes,



practice, we may truncate the series to finite

order. The adaptive nonlinear IIR filtering
problem consists of adapting the filter
coefficients
ao(n),...,aN(n),...,aNN(n),...,bl(n),...’...’

Byy.1(N),- -+, Coa(N)y 1 G041 (N) s Cny.umt-m (M)

The objective of the adaptive filter is to exhibit
a good estimationy(n pf the reference signal

d(n). Equation (1) may written in the matrix

form as:

y(n) = H™ (n)X(n) (2)
HT (1) = [8y(N)..... 8 (M), B o (). ... 2y (1),

8900, (M) Ag1o.(N), By (N), by (N), ... ()
ST ISR () RN ( AP (e

XT(n) = |x(n),x(n-1),.....,..., x2(n), x(N)x(n =1),.........

2.1.Gradient method
The estimated gradient is given by:

0 _9 € _ d y(n _
O =~ ol ~2e(n) ) ~2e(n)H; (n)

where:

H,(n) =5 d y(n)
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2.2.Exact Gradient

By assuming low variations of the
adaptive  parameter filter it follows:
HMN=H(n-)=....... =H(M-N)=..
this implies that in equation (7) we shall
replacev(n) by v(n-1). The resulting expression
is as follows:

_ a [yn-m)],
@, (n) = zm() Yo

ZZ%( n [yn-m)y(n-m)]

M=1i=1 o vin-m) *

© 2 0 |y(n-m)..y(n-m,)]

ml:l--;l%..mq(n) em) T o
< _ .9 [yin-m)]

22 OO Ty T

[

i Cry..npm,..m, (MX(N=Ny)...x(n=n,)

m= 1
0 [y(n-m)...y(n-m,))]
d v(n—m)

2.3. Approximate Gradient

The approximate gradient is given for
¢, (n) =0. This implies thaH:(n)= X(n).

2.4. Simulation results using the LMS
adaptive IIR Volterra filtering based on the
exact and approximate gradient

In order to compare the LMS adaptive
algorithm based on both approaches we have
used the following IIR Volterra filter in a
system identification experiment:

y(n) =0.8y(n-1) -0.5y(n-2) +

0.7y%(n) —0.4y(n)y(n—1) +0.1y*(n—1) + x(n)

where x(n) is a white gaussian noise of
variance 0.01. the learning parameter is



[H - H,[f

u =10"*.ER(dB) =10log————, 4(100) b(100 &(100)
||H0|| True 15 0.7 1.0
: : o~ RLS 1.21#0.05 | -0.49+0.04| 0.89+0.12
whereH,, is the desired vector coefficients. RIV 1976019 | 0.14£0.13| 0.46+0.10
ER(B) RELS | 1.38+0.07 | -0.58+0.08| 0.80+0.13
0 RPEM | 1.41#0.13| 0.64+0.09| 0.62+0.90
\ RPEM* | 1.460.04 | -0.67+0.03| 0.92+0.14
1 . d(100) (100
True 0.5 0.12
RLS 0.76+0.11 0.01£0.04
1.5 RIV 0.57+0.08 0.03£0.10
(1)\ @) RELS 0.93+0.31 0.092+0.05
\ RPEM 1.11#1.50 0.12+0.03
-2 e RPEM* 0.62+0.25 0.120.03
25 Tablel: Monte Carlo test (10 realizations of the

input signal)for system identification methods to the

0 4000 8000 10000 12000 : : o
Volterra filter equation (9). RPEM*(9 realizations )

_ iterations is the RPEM when outlier is discarded. The
Figurel:(1) exact gradient estimation are given:the standard deviation, note
(2) approximate gradient that the outlier appears in both the parameters

_ . , b(100 =0.64+0.09 andi(100 =1.11+1.50.
3.Recursive prediction error method with

Extended Kalman filter for stabilizing the To analyze the stability of the RPEM, it
adaptive IIR filter: is suitable to consider the state space model of

equation (9). Thus this input/ output model may

be expressed as:

[(T(n+1) = AT(n) + DT (n)x(n) + Bx(n) +v(n)

3.1 Problem formulation:
In system identification experiment and

in the case of stochastic additive noise, unstabler (10)
behavior of the recursive adaptive Volterra fitter C¥(n) = CT(n)+&(n)
may occur. The recursive prediction error Where:
method with the Extended Kalman filter for z(n) O @ b dO [co
stabilizing bilinear filter purpose has been used T(n) = %(n—l)g,A: % 0 o2B= %)D,
in [2]. In this section similar materials will be K(n-1F ® 0 Of A
developed to the recursive IR Volterra filter.
3.2 Stability of the predictor: g 0 OB
Let us first choose a simple IIR filter D=E}) 0 05C=[1 0 0],v(n)=0

given by: B 0 Of
Ez(n) =az(n-D+bz(n-2)+c x(n-D+dxn-2) |t s clear that the matrices, B andD depend
0 +g z(n-Yx(n-1) of the parameter estimation vectdlr In the

_ sequel we shall denote these matrice\@y),
() =2 + () B(H) et D(H).

, ) , . In the case oé(n) white noise and/(n)=0 the
In th'ls'sys_tem the noise enters in additive andpredictor of system (10) may written by:
multiplicative terms and hence the standard

| O
RLS algorithm gives biased estimates. The E"(NlH)=[A(H)+D(H)X(n)]T(n,H)+B(H)X(n)
instrumental variable and the recursive 0
prediction error (RPEM) [4] give best results. (n/H) =CT(n/H)
The RPEM shows its superiority in simulation

but shows some outliers. (11)
The gradient of this predictor may be

determined by:



O O O
W;(n,H) = i;m/(n, H) =CT, (n,H) T(n+1) =(F, -K,C)T(n) + B.x(n) +K,y(n) (21)
oH; Wi(n+1) = (Fy - Ko () +

where: 0 - 0
0 O —H'[F(an)] |H=p|(n)T(n)+d H-[B(H)] |H=H”(n)X(n)
T (n+1.H) = [A(H) + D(H)X(M]T, (nH) + - | (22)
29 AME(NH)+ B2 D) E(H)x)  Fa=F(AM)=AH M) +DHMXM)  (23)
@ H O @ H O K, =[F,P(n)C"1S! (24)
+ -2 B(H)XM) P(n+1) = F,P(N)F +R -K,S, K] (25)
@ H O S, =CP(N)C" +R, (26)

. . . (12)14 include the effect ofK,in the EKF we
This equation represents the gradient used in the

RPEM algorithm. The stability of this gradient should replace equation (22) by:

. : d .
depends strongly on the matrix function: wi(n+1) = (Fy ~ K Chyi(n) + 5 - [F(nH)] li=rigy T+
0 0 !
F, = A(H_(n)) + D(H (n))x(n) .(13) 9 [B(H)] |H=ﬁ(n)x(n)+L [K (n,H)][ y(n) - CT(n)]
The outlier appears when the valueFgfyields 0 Hi 0 Hi
the poles of equation (11) to be outside the unit (27)

circle for a certain input realization. , 7} .
3.3 Time varying Kalman Filter where  the  expression 9 H [Kn.F)lis

_ In order to stabilize the predictor of the gptained from the derivation of equations (14)-
time varying linear system (11) having the (16). In conclusion the algorithm given by the
system matrixF (n,H) = A(H)+ D(H (n))x(n) we  €quations (19)-(21) and (23)-(27) is the
shall use the time varying Kalman Filter [5]: stablllzec_i EKF for the IIR Volterra filter given
o 0 by equation (9).
T(n+1L,H)=F(n,H)T(n,H) + B(H)x(n) (14) 3.5 Simulation results for the EKF
O To highlight the stability efficiency of

* K H)[y(m -CT(n.H)] the EKF we have considered a nonlinear
y(n/H) =CT(n,H) (15) system with a strong nonlinear term which may
K(n,H) = [F(n,H)P(n,H)CT]S™(n, H) (16)  9ive an unstable behavior. The system is given

T Y-
P(n+1,H) _: F(n,H)TP(n,H)F (nH)+R (17) T(n+1)=aT(n)+bT(n)x(n-1)+cx(n)
_K(an_)S (an)KT (an) y(n):T(n)+e(n)
S(n,H) =CP(n,H)CT +R, (18)  (28)
with: R =E(x(n)x"(n)), R,=E(e(n)e’(n)and  where )} and {x(n)lare respectively the
E(x(n)e' (n)) =0. Note that the ternk(n,H) in white noise and the input signal which are

equation (14) depends on the parameter vectoiwoepfﬁgsgfu%fsvg; '&Zciiéesggcm“\éfgsgg and
H it should have effect on the gradient ; P ’

. - b=-0.7, c=0.5 Figure 2 and Figure 3 show the
wi(n,H). In the extended Kalman filter this estimation of the parametec™'respectively by
effect is neglected see [5]. using the time varying Kalman Filter equations
3.4 Extended Kalman Filter (EKF) (14)-(18) and the EKF with RPEM equations

Here the extended Kalman Filter uses {(19)-(21);(23)-(27)}. Note that the RPEM
both the RPEM for the parameter identification gpplied alone to the system (28) exhibits

procedure together with the time varying ynstable behavior.
Kalman Filter for state estimation:
O O
H(n) =H(n-1)+ R (nw(n(y(n-y(n)  (19)
R(n) = A(MR(N=1) +g(n)y (n) (20)
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Figure2: Estimated parameter "c" with time varying
KF equations (14)-(18).
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Figure3: Estimated parameter "c" with EKF(RPEM)
equations {(19)-(21);(23)-(27)}
4 Conclusion

In this paper we have presented adaptiv

IR Volterra filters. The exact and the

approximate gradient adaptive algorithms have

been developed and applied to IIR Volterra
filter. Stability issues of these nonlinear filters
have been discussed.
stability of an input/output IR Volterra filter,

we have switched to the state space
representation and found out that the EKF
linked with the RPEM may stabilize the
adaptive IIR algorithm. Clearly this algorithm is
computationally costly since the dimension of

the state space depends upon the number of th
filter parameters. Further work are led to search

for other more efficient stabilizing methods for
Volterra filters.
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