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ABSTRACT :

In this paper we present an adaptive recursive
nonlinear filter based on the higher order
Volterra series infinite impulse response (IIR)
structure. The proposed work is an extension of
the work of Roy et al [9] in which they limit the
Volterra recursive filter to the second order.
Adaptive algorithms based on the exact and the
approximate gradient will be derived. Stability
issues based on the Extended Kalman Filter will
be discussed. Simulations results highlight the
usefulness of the proposed algorithms.
Improvement on the convergence and stability
behavior will be evaluated.

1. Introduction

Over the last decade, Volterra filters (FIR) or
polynomial filters [6] and nonlinear adaptive
infinite impulse-response (IIR) filters have been
appealing areas of research and have been
considered in many real world applications
[12][1]. While Volterra filters have been applied
in many applications they still present some
limitations because of their computational
complexity which increases exponentially with
the filter order [9]. As an alternative to using
these filters Roy et al in [9] proposed recursive
second-order polynomial filters in their study
which is limited to the second order. In this
paper we shall consider higher order recursive
polynomial filters and shall develop the
corresponding adaptive gradient based
algorithms. In the second part of this paper
stability issues of the recursive polynomial filter

using the recursive prediction error algorithm
[2] with the Extended Kalman filter will be
stated.

2.General adaptive IIR Volterra filters:

The general discrete NARMA [1] [3] [7] model
is defined by:
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where x(n) represents the discrete input
signal, )(ny  is the discrete recursive output
signal. Note here that the memory of the
recursive and the non recursive parts is infinite.
However for computational purposes, in



practice, we may truncate the series to finite
order. The adaptive nonlinear IIR filtering
problem consists of adapting the filter
coefficients:
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The objective of the adaptive filter is to exhibit
a good estimation )(ˆ ny  of the reference signal
d n( ) . Equation (1) may written in the matrix
form as:

)()()( nXnHny T=                                            (2)
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2.1.Gradient method

The estimated gradient is given by:
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where:
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2.2.Exact Gradient
By assuming low variations of the

adaptive parameter filter it follows:
...)(........)1()( ≈−≈≈−≈ NnHnHnH

this implies that in equation (7) we shall
replace v(n) by v(n-1). The resulting expression
is as follows:
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2.3. Approximate Gradient
The approximate gradient is given for

)(nvψ =0. This implies that Hf(n)= X(n).

2.4. Simulation results using the LMS
adaptive IIR Volterra filtering based on the
exact and approximate gradient

In order to compare the LMS adaptive
algorithm based on both approaches we have
used the following IIR Volterra filter in a
system identification experiment:

)()1(1.0)1()(4.0)(7.0

)2(5.0)1(8.0)(
22 nxnynynyny

nynyny

+−+−−

+−−−=

where x(n) is a white  gaussian noise of
variance 0.01. the learning parameter is
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3.Recursive prediction error method with
Extended Kalman filter for stabilizing the

adaptive IIR filter:

3.1 Problem formulation:
In system identification experiment and

in the case of stochastic additive noise, unstable
behavior of the recursive adaptive Volterra filter
may occur. The recursive prediction error
method with the Extended Kalman filter for
stabilizing bilinear filter purpose has been used
in [2]. In this section similar materials will be
developed to the recursive IIR Volterra filter.
3.2 Stability of the predictor:

Let us first choose a simple IIR filter
given by:









+=

−−+

−+−+−+−=

)()()(

)1()1(

)2()1()2()1()(

nvnzny

nxnzg

ndxnxcnzbnzanz

                                                                         (9)
In this system the noise enters in additive and
multiplicative terms and hence the standard
RLS algorithm gives biased estimates. The
instrumental variable and the recursive
prediction error (RPEM) [4] give best results.
The RPEM shows its superiority in simulation
but shows some outliers.

)100(â )100(b̂ )100(ĉ

True
RLS
RIV
RELS
RPEM
RPEM*

1.5
1.21±0.05
1.47±0.19
1.38±0.07
1.41±0.13
1.46±0.04

---0.7
-0.49±0.04
0.14±0.13
-0.58±0.08
0.64±0.09
-0.67±0.03

1.0
0.89±0.12
0.46±0.10
0.80±0.13
0.62±0.90
0.92±0.14

)100(d̂ )100(ĝ

True
RLS
RIV
RELS
RPEM
RPEM*

0.5
0.76±0.11
0.57±0.08
0.93±0.31
1.11±1.50
0.62±0.25

0.12
0.01±0.04
0.03±0.10
0.092±0.05
0.12±0.03
0.12±0.03

Table1: Monte Carlo test (10 realizations of the
input signal)for system identification methods to the
Volterra filter equation (9). RPEM*(9 realizations )
is the RPEM when outlier is discarded. The
estimation are given ± the standard deviation, note
that the outlier appears in both  the parameters

)100(b̂ ===0.64±0.09 and )100(d̂ =1.11±1.50.

To analyze the stability of the RPEM, it
is suitable to consider the state space model of
equation (9). Thus this input/ output model may
be expressed as:
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It is clear that the matrices A, B and D depend
of the parameter estimation vector H. In the
sequel we shall denote these matrices by A(H),
B(H) et D(H).
In the case of e(n) white noise and v(n)=0 the
predictor of system (10) may written by:
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The gradient of this predictor may be
determined by:

                                    iterations
Figure1:(1) exact gradient
(2) approximate gradient
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This equation represents the gradient used in the
RPEM algorithm. The stability of this gradient
depends strongly on the  matrix function:

)())(())(( nxnHDnHAFn

∧∧
+=                           (13)

The outlier appears when the value of Fn yields
the poles of equation (11) to be outside the unit
circle for a certain input realization.
3.3 Time varying Kalman Filter

In order to stabilize the predictor of the
time varying linear system (11) having the

system matrix )())(()(),( nxnHDHAHnF +=  we
shall use the time varying Kalman Filter [5]:
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with: ))()((1 nxnxER T= , ))()((2 neneER T= and

0))()(( =nenxE T . Note that the term K(n,H) in
equation (14) depends on the parameter vector
H  it should have effect on the gradient

),( Hniψ . In the extended Kalman filter this

effect is neglected see [5].
3.4 Extended Kalman Filter (EKF)

Here the extended Kalman Filter uses
both the RPEM for the parameter identification
procedure together with the time varying
Kalman Filter for state estimation:
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To include the effect of Kn in the EKF we
should replace equation (22) by:
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where the expression )],([ HnK
H i∂

∂
is

obtained from the derivation of equations (14)-
(16). In conclusion the algorithm given by the
equations (19)-(21) and (23)-(27) is the
stabilized EKF for the IIR Volterra filter given
by equation (9).
3.5 Simulation results for the EKF

To highlight the stability efficiency of
the EKF we have considered a nonlinear
system with a strong nonlinear term which may
give an unstable behavior. The system is given
by:
T(n+1)=aT(n)+bT(n)x(n-1)+cx(n)

y(n)=T(n)+e(n)
(28)
where {e(n)} and {x(n)}are respectively the
white noise and the input signal which are
independent of variances respectively unity and
two. The values of the true parameters are a=1,
b=-0.7, c=0.5 Figure 2 and Figure 3 show the
estimation of the parameter "c" respectively by
using the time varying Kalman Filter equations
(14)-(18) and the EKF with RPEM equations
{(19)-(21);(23)-(27)}. Note that the RPEM
applied alone to the system (28) exhibits
unstable behavior.



Figure2: Estimated parameter "c" with time varying
KF equations (14)-(18).

Figure3: Estimated parameter "c" with EKF(RPEM)
equations {(19)-(21);(23)-(27)}

4 Conclusion
In this paper we have presented adaptive

IIR Volterra filters. The exact and the
approximate gradient adaptive algorithms have
been developed and applied to IIR Volterra
filter. Stability issues of these nonlinear filters
have been discussed. In order to study the
stability of an input/output IIR Volterra filter,
we have switched to the state space
representation and found out that the EKF
linked with the RPEM may stabilize the
adaptive IIR algorithm. Clearly this algorithm is
computationally costly since the dimension of
the state space depends upon the number of the
filter parameters. Further work are led to search
for other more efficient stabilizing methods for
Volterra filters.
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