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ABSTRACT

We approach the nonlinear decision feedback equalization
problem from anH1 estimation point of view. Using
the standard (and simplifying) assumption that all previ-
ous decisions are correct, we obtain an explicit parame-
terization of allH1 optimal decision feedback equaliz-
ers. In particular, under the above assumption, we show
that MMSE decision feedback equalizers areH1 opti-
mal. TheH1 approach also suggests a method for deal-
ing with errors in previous decisions, and results in an
equalization scheme with improved performance over other
equalizers that do not take such errors into account.

1. INTRODUCTION

One of the ultimate goals of digital communications is the
ability to transmit information from one point to another
with the highest possible data rates. One major obstacle
in achieving this goal is intersymbol interference (ISI),
which is the effect of previous and future symbols on the
current symbol imposed by the communications channel,
since it affects the bit error rate (BER) performance in de-
tecting the original transmitted sequence. Therefore, var-
ious methods have been developed to increase the system
performance by reducing the effects of the ISI.

Decision feedback equalization (DFE) is a nonlinear
method where old decisions are employed, in conjunc-
tion with the observations, to improve the equalizer per-
formance. The DFE has been a focus of research for more
than two decades. The reference paper [1] provides a good
overview and historical summary of these research efforts.
A more recent treatment of minimum mean square error
decision feedback equalization is in [2].

Recently, theH1 criterion has been proposed [3, 4]
for the linear equalization problem, with the belief that the
resultingH1 equalizers will be more robust with respect
to model uncertainties and the lack of statistical knowl-
edge of the exogenous signals. In this paper, we approach
the decision feedback equalization problem from theH1
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estimation point of view. In the first part of the paper,
we describe the decision feedback equalization problem.
Following this section, we summarize some results from
H1 estimation theory that are relevant to the equalization
problem. Then, in Section 4.2, we look at theH1 de-
cision feedback equalizers under the assumption that the
previous decisions input to the feedback filter are correct
and, among other results, show that MMSE equalizers are
H1-optimal. In the last part of the paper, we abandon the
assumption of the correctness of previous decisions, a sit-
uation that, in fact, is well-suited to theH1 framework.
We show that we can improve the BER performance with
this new approach.

2. DECISION FEEDBACK EQUALIZATION
PROBLEM

The standard discrete-time model for the decision feed-
back equalization problem is illustrated in Figure 1. In this
figure,fbig represents the discrete-time finite-alphabet in-
put data sequence. If we assume the number of users to
beM thenbi 2 CM . The distortion effects of the com-
munications medium are represented by the linear time-
invariant transfer matrixH(z). If there areN antennas
or branches at the receiver,i.e., yi 2 CN , thenH(z) is
assumed to be a causal and stableN �M matrix func-
tion. We also assume that the number of users is less than
or equal to the number of antennas,i.e., M � N . The
sequencefvig represents the noise disturbance (e.g., re-
ceiver antenna noise, co-channel interference, etc.) cor-
rupting the observations. Modeling errors due to imper-
fect knowledge of the true channel can also be incorpo-
rated into the additive disturbancefvig.

Referring to Figure 1, the basic aim in decision feed-
back equalization is to designK1(z), the causal feedfor-
ward filter, andK2(z), the causal feedback filter, so as to
estimatebi�d, whered � 0 is a parameter indicating the
delay in estimating the transmitted sequence. The esti-
mate, denoted bŷbi�d, is the sum of the outputs ofK1(z)
andK2(z). The design ofK1(z) andK2(z) depends upon
the criterion chosen to define the closeness ofb̂i�d to bi�d.

Most of the research in the decision feedback area is
focused on the mean square error criterion (see for ex-
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Figure 1: Decision Feedback Equalization

ample [2]), mostly because it allows for the derivation of
explicit formulas for both the feed-forward and feedback
filters. In this paper, we will use theH1 criterion as the
basis of our formulation of the filters.
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Figure 2: Setup for linear estimation

3. H1 ESTIMATION

The basic setup for a general linear estimation problem is
illustrated in Figure 2. HereH(z) andL(z) areknown
causal linear time-invariant filters that map the input se-
quencefbig to their respective outputsfyig andfsig. The
driving inputfbig and the additive disturbance sequence
fvig are assumed to beunknown. The estimation problem
is to design a causal linear time-invariant estimatorK(z)
that estimates the unobservable signal sequencefsig, us-
ing the observationsfyj ; j � ig. We shall denote such
estimates bŷsiji and the resulting estimation errors by
~siji = si � ŝiji. LetTK(z) denote the transfer matrix that
maps the normalized unknown disturbancesQ�1=2fbig
andR�1=2fvig to the estimation errorsf~sijig. Thus,

TK(z) =
�
(L(z)�K(z)H(z))Q1=2 �K(z)R1=2

�
(1)

whereQ = Q1=2Q�=2 > 0 andR = R1=2R�=2 are posi-
tive normalization weights.

The choice ofK(z), and thereby the estimateŝsiji,
depends upon our choice of performance criterion. In
H1 estimationK(z) is chosen to minimize the maximum
energy gain ofTK(z), also known as theH1 norm of
TK(z), defined as

kTK (z)k21 = sup
b;v2l2;b;v 6=0

P1

i=�1
j~sijij

2P
1

i=1
bT
i
Q�1bi +

P
1

i=�1
vT
i
R�1vi

(2)

Problem 1 (Optimal H1 Filtering Problem) :
Find a causal estimatorK(z) that satisfies

inf
K(z)

kTK(z)k
2
1 : (3)

Moreover, find the min-max energy gain
2opt.

There are very few cases where a closed-form solution
to the optimalH1 filtering problem can be found, and
in general one relaxes the minimization and settles for a
suboptimal solution.

Problem 2 (SuboptimalH1 Filtering Problem) :
Given
 > 0, find, if possible, a causal estimatorK(z)

that guarantees
kTK(z)k21 < 
2 (4)

This clearly requires checking whether
 > 
opt.

It will now be useful to give some flavor of the solution
to Problem 2. (See [5] for more details). We introduce the
following so-calledPopov function,

�(z) =

h
R +H(z)QH�(z��) �H(z)QL�(z��)
�L(z)QH�(z��) �
2I + L(z)QL�(z��)

i
;

which can be regarded as a certain indefinite generaliza-
tion of “the spectral density function”. Then it can be
shown that a causal estimator,K(z), that achieveskTK(z)k1 <

 exists if, and only if, the Popov function admits a canon-
ical J-spectral factorization of the form

�(z) =

h
L11(z) L12(z)
L21(z) L22(z)

i h
I 0
0 �I

i
h

L�
11
(z��) L�

21
(z��)

L�
12
(z��) L�

22
(z��)

i
(5)

with

�
L11(z) L12(z)
L21(z) L22(z)

�
andL11(z) causal and causally

invertible, andL12(z) strictly causal. If this is the case,
then all possibleH1 estimators of level
 are given by

K(z) = (L22(z)C(z)� L21(z)) (L11(z)� L12(z)C(z))
�1

; (6)

whereC(z) is any causal and strictly contractive operator,
i.e., C(z) is causal and is such that

jC(ej!)j2 < 1 (7)

, for all! 2 [0; 2�]. An important special choice isC = 0
which leads to the so-called “central” filter

Kcen(z) = �L21(z)L
�1
11 (z): (8)

4. H1 DECISION FEEDBACK EQUALIZATION

4.1. An Equivalent Model

Decision feedback equalization is a nonlinear scheme due
to the nonlinear decision device involved in the structure.
It is therefore difficult to obtain explicit expressions for
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Figure 3: Equivalent Channel Model

the filters employed with respect to any criterion. By re-
moving the nonlinear decision device, we can remodel the
decision feedback equalization problem as shown in Fig-
ure 3, so that it takes the form of a general linear estima-
tion problem withL(z) = z�dI (since we are trying to
estimate the input symbols with a delay ofd). In this fig-
ure,oi represents the possibly incorrect decisions andei
represents the corresponding decision errors. Thus, in this
model

HV (z) =

�
H(z)

z�(d+1)I

�
(9)

is the equivalent matrix channel. Again according to the
same model

YV (z) =

�
Y (z)
O(z)

�
andNV (z) =

�
V (z)
E(z)

�
(10)

are the equivalent observation and noise vectors, respec-
tively. We define the energy weighting matrix for the noise
NV as

RNV =

�
R 0
0 �I

�
: (11)

where R represents the weighting we assign to the additive
disturbancefvig and� represents the weighting assigned
to the decision errorsfeig. Then the decision feedback
equalization problem is equivalent to the filtering problem
of finding a causal

KV (z) =
�
K1(z) K2(z)

�
(12)

that minimizes theH1 norm of the transfer matrix

TKV
(z) =

� �
z�dI �KV (z)HV (z)

�
Q1=2 �KV (z)R

1=2

NV

�
:

(13)

Therefore the Popov function for this problem is

�(z) =

�
RNV +HV (z)QH

�

V (z
��) �HV (z)Qz

d

�z�dQH�V (z
��) Q� 
2I

�
:

(14)

4.2. H1 Equalizers for d = 0

Following the common practice in the literature to sim-
plify the derivations, we assume that the decisions input
to the feedback filterK2(z) are correct (i.e., ei = 0). We
also look at the special case whered = 0 and assume
binary antipodal signaling for whichbi 2 f�1; 1g and
thereforeQ = I . The results can be easily generalized to
more complex signal constellations. In [6], we show that


2opt = (1 + �min(h
�
0R

�1h0))
�1 (15)

whereh0 = H(1) is the impulse response matrix at zero
delay.Remarks:

� It is interesting to compare the performance of the
H1 decision feedback equalizer with theH1 lin-
ear equalizer by comparing the corresponding opti-
malH1 norms. As shown in [3], for a scalar chan-
nel, the linear equalizer has


2opt;linear =
r

r +minw jH(ejw)j2
(16)

for aminimum phaseH(z) and


2opt;linear = 1 (17)

for a non-minimum phaseH(z). For the decision
feedback equalizer, irrespective of the minimum phase
property of the channel, (15) yields


2opt;dfe =
r

r + jh0j2
(18)

For non-minimum phase channels, it is clear that

2opt;dfe � 
2opt;linear sincejh0j2 � 0 and there-
fore 
2opt;dfe � 1. For minimum phase channels,
over the regionjzj � 1, the minimum value of the
H(z) is achieved on the unit circle. This is due
to the observation thatH�1(z) has its all poles in-
side the unit circle and therefore, by the maximum
modulus theorem; H�1(z) achieves its maximum
on the unit circle forjzj � 1.ThusH(z) achieves its
minimum on the unit circle for this region . Since
h0 = H(1), we have

jh0j
2 � minwjH(ejw)j2; (19)

so that,


2opt;dfe � 
2opt;linear (20)

i.e. the theH1 decision feedback equalizer has bet-
terH1 performance than theH1 linear equalizer.



� Another important observation is obtained when we
look at the central solution (8) to the decision feed-
back equalization problem (see [6] for details):

Kcentral(z) = �L21(z)L
�1
11

(z) (21)

=

h
h�
0
(h0h

�
0
+ R)�1

�(h1 + h2z
�1 + :::)h�

0
(h0h

�
0
+R)�1

iT
which turns out to be the MMSE decision feed-

back equalizer (MMSE-DFE) for the given setup
(and further assuming thatfbig is an independent
Bernoulli process with parameter12 and thatfvig is
white noise with covarianceR).

� The factorization of the Popov function (14) can be
achieved easily, but with increasing complexity of
the expressions, for anyd > 0. This is because
the Popov function, under the correct decisions as-
sumption,i.e., � = 0, is always unimodular [6].

5. H1 OPTIMALITY OF MMSE DECISION
FEEDBACK EQUALIZATION

An important result from the previous section is that under
the correct previous decisions assumption, and ford = 0,
the MMSE decision feedback equalizer isH1-optimal.
It turns out that this is true for anyd > 0. To show this
fact, we can look at the error spectrum corresponding to
the MMSE-DFE which is given by

Er(z) = fz�dH�V (z
��)M�(z��)g�

ffz�dH�V (z
��)M�(z��)g�g

� (22)

wheref�g� denotes the strictly non-causal part of its ar-

gument andfA(z)g�
�
= A�(z��) for any functionA(z).

M(z) is the causal and causaly invertible factor obtained
from the canonical factorization ofSYV (z) which can be
written as

SYV (z) = RNV +HV (z)H
�

V (z
��) (23)

=

�
R+H(z)H�(z��) H(z)zd+1

z�d�1H�(z��) I

�
(24)

=

�
R1=2 H(z)zd+1

0 I

�
| {z }

N(z)

�
R1=2 0

H�(z��)z�d�1 I

�
| {z }

N�(z��)

(25)

(26)

The canonical factorM(z) can be writen in terms of
N(z) as

M(z) = N(z)�(z) (27)

=

�
R1=2 H(z)zd+1

0 I

� �
�11(z) �12(z)
�21(z) �22(z)

�
(28)

(29)

where�(z)��(z��) = I is chosen such thatM(z) is
causal and causally invertible. The causality of theM(z)
constrains�21(z) and�22(z) to be causal.

In [7], it is shown that the error spectrum is frequency
independent and equal to

Er(z) = j�21(1)j2 + j�22(1)j2: (30)

In the scalar case, a flat error spectrum implies the simul-
taneous minimization of both the maximum value of the
error spectrum and its area under the curve. Since the
MMSE-DFE minimizes the area under the curve, this im-
plies that it is alsoH1-optimal. We show in [7] that this
property of the MMSE-DFE can also be extended to more
general matrix channels. This is a striking result, which
sheds further light on the properties of the MMSE-DFE.
Moreover, it is a rare case, if not the only non-trivial one,
where the solutions to theH1 and MMSE filtering prob-
lems coincide.

6. ERROR IN THE FEEDBACK

In the previous sections, to simplify the analysis and the
derivation of the filters, we made the standard assumption
that the decisions used by the feedback filter were always
correct. When the channel is known a priori, this assump-
tion can be made to hold by using precoding techniques
(such as the Tomlinson-
Harashima precoder [8]) that implement the feedback part
in the transmitter section. However, when the channel is
not known a priori (as is often the case) the existence of
decision errors is inevitable.

When we have decision errors thefeig form some
non-zero sequence. Sincefeig is a complicated function
of the feed-forward and feedback filters, as well as the
other parameters in the system, it is almost impossible to
give an explicit statistical description of the errors and to
therefore design a filter with respect to some statistical cri-
terion such as MMSE.

However, as far as theH1 criterion is concerned,feig
is an unknown non-zero sequence of small power given
by, say,�. Therefore theH1 criterion can provide a so-
lution which safeguards against the worst-case decision
errors. Thus, we propose to design anH1-optimal equal-
izer that minimizes the maximum energy gain from the
disturbancesQ�1=2fbig,R�1=2fvig, andf��1=2eig to the
estimation errorsf~sijig.

When� 6= 0, the corresponding Popov function (14)
is no longer unimodular and therefore we cannot obtain
explicit expressions for theH1 equalizers for this case.
However, we can still obtain numerical solutions (to de-
sired accuracy) by solving Riccati equations (or recursions).
An important conclusion is that, when� 6= 0, theH1-
optimal solution isdifferentfrom the corresponding MMSE-
DFE, which assumes a white decision error sequence [6].

In the design of the filters, we need to choose the
 and
� parameters. The
 should be clearly be greater than
opt.
Although there is no explicit expression for
opt, one can
use the upper bound provided in [7].



The choice of the� parameter is critical since it repre-
sents the power of the decision errors, which is not known
beforehand. Figure 4 illustrates the variation of the BER
of the centralH1 equalizer as a function of� for the chan-
nelH(z) = 0:56�0:06z�1+1:07z�2+1:6z�3�0:13z�4,
with delayd = 2 andSNR = 18dB. As we increase the
value of� from 0, the BER decreases (since the equalizer
is beginning to take the decision errors into account) un-
til we reach a minimum point. After this point the BER
begins to increase because� overestimates the actual de-
cision error power.
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In Figure 5, we have compared the performances of
theH1-DFE for the� = 0 case and the choice of� that
minimizes the BER, for the same channel and delay as
above. The dashed line refers to the BER vs. SNR perfor-
mance of the MMSE-DFE that assumes correct decisions
and therefore uses� = 0, whereas the solid line represents
the performance of theH1-DFE which has� chosen to
minimize the BER. As can be observed from the figure,
depending on the SNR, the use of the� parameter can pro-
vide 1dB to 2dB gain.

7. CONCLUSION

We studied the problem of decision feedback equalization
from anH1 estimation point of view. We can convert
nonlinear decision feedback scheme to a linear one by re-
placing nonlinear decision path with delayed input cor-
rupted by decision error sequence. It is hard to give a use-
ful model for the decision error sequence, therefore, it is
generally assumed to be zero. We provided with theH1

formulation of the decision feedback equalizers under that
assumption and showed that MMSE andH1 solutions
coincide. For the more realistic case where decision er-
rors are not assumed to be zero, it is hard to formulate
DFE filters with respect to a statistical criterion, such as
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Figure 5: BER vs. SNR

MMSE, but theH1 framework still provides a solution
with better performance than the MMSE-DFE filter that
does not take these errors into account. As a result,H1

approach can be considered to be worst-case compensa-
tion for the errors introduced by linear approximation of
the nonlinear structure.
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