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ABSTRACT

FIR filterbank precoders offer a unifying framework for sev-
eral digital modulation and multiplexing schemes used in
single- and multi-user transmissions, such as OFDM and
CDMA. With minimal reduction in bandwidth efficiency, FIR
filterbank transmitters can be designed to allow for perfect
(in the absence of noise) equalization of any FIR channel
with FIR zero-forcing (ZF) equalizer filterbanks. The key
idea in this paper is to apply the constant modulus algo-
rithm (CMA) to block transmission schemes that use re-
dundant precoding. The resulting modulation/multiplexing
techniques guarantee perfect equalization of an FIR chan-
nel with an FIR filterbank equalizer of a priori known order,
without the restrictions of blind adaptive FIR CMA equaliz-
ers that rely on multiple antennas and fractional sampling.

1. INTRODUCTION AND SYSTEM MODEL

Over the past twenty years, blind adaptive channel equal-
ization has been widely explored and several schemes have
been developed. They are usually designed to minimize
cost functions based on higher than second-order statistics
of the channel output. Among them, Godard’s algorithm
[4], has received a lot of attention. The more recent Shalvi-
Weinstein algorithm (SWA) [9], has convergence properties
similar to CMA [6].

The success and effectiveness of the CMA are contin-
gent upon its ability to identify a ZF equalizer in the pres-
ence of noise and channel distortions. With infinite data
and equalizer length it should at least converge globally
to a stable equilibrium in the noise-free case in order to
produce satisfying performance in the noisy case. How-
ever, unless the (generally non–causal) equalizer has infi-
nite length in a symbol-spaced channel, the convergence
of CMA cannot be always assured. Extraneous local min-
ima exist even for a noiseless channel. Moreover, it has
been proved that CMA does not converge when a symbol-
sampled channel has zeros on (or even close) to the unit cir-
cle [2]. To overcome the drawback of symbol-spaced CMA
(S-CMA), fractionally-spaced CMA (FS-CMA) or multi-
channel reception have been proposed (see e.g. [6]). Al-

though [6] addresses the problem of channel zeros on (or
close to) the unit circle, coprimeness among the multiple
channels is necessary to guarantee FIR channel identifia-
bility. When the multiple channels have common zeros, not
only the convergence will be slower, but also the global con-
vergence itself can not be assured.
Recently, it was shown that through redundant filterbank
precoding the existence of FIR equalizers for any FIR chan-
nel can be guaranteed under some sufficient conditions on
the transmit filterbankonly [7]. Moreover, redundant filter-
bank precoders offer a unifying discrete-time model which
encompasses a wide range of digital modulation and coding
schemes [7], such as orthogonal frequency-division multi-
plexing (OFDM) and discrete multitone (DMT) [1], frac-
tional sampling (FS), (de-)interleaving, as well as multi-
user transmissions such as TDMA, FDMA, CDMA, and
the most recent discrete wavelet multiple access (DWMA)
schemes.
The idea of this paper is to exploit the diversity provided
by block transmission schemes to devise self recovering fil-
terbank (FB) transceivers that use a block CMA cost func-
tion to estimate the equalizer blindly. The key point is that
FB-CMA does not suffer from the lack of identifiability of
FS-CMA and hence it leads to a robust blind equalization
scheme. It is important to remark that for the CDMA trans-
mission, the substance of our problem is not different from
blind MUI interference cancellation. Although we restrict
our attention to the downlink case, the main advantage of
our approach over other blind decorrelating receivers [5],
[10], is that we do not require knowledge of the user of
interest signature code, nor we assume symbol whiteness.
Simulations will illustrate the performance of the proposed
technique.

2. PRELIMINARIES

Suppose that the channel is FIR with orderL and impulse
responseh := (h(0); : : : ; h(L))T . Let us denote byF 0;G0

theP �M precoder andM�P decoder matrices and let us
assume thatL < P . Blocking the channel input/output data,
in theP � 1 vectorsu(n) := (u(nP ); : : : ; u(nP +P � 1))



andx(n) := (x(nP ); : : : ; x(nP + P � 1)) respectively, it
can be shown that the discrete time input-output relationship
for a wide class of linear transceivers can be described in
an unified vector-matrix formulation [7]. More specifically,
denoting byH0 andH1 theP � P convolution Toeplitz
matrices such that

fHlgi;j = h(lP + i� j) l = 0; 1; i; j = 0; : : : ; P �1;

and indicating bys(n) theM � 1 vector of the information
symbols1, the transmitted block is:

u(n) = F 0s(n); (1)

the noise–free received block can be written as

x(n) =H0u(n) +H1u(n� 1); (2)

and, finally, the equalizer output is given by [7]

ŝ(n) = G0x(n) +G0v(n) (3)

= G0H0F 0s(n) +G0H1F 0s(n� 1) +G0v(n)

wherev(n) is the AGN noise vector. TheM columns of
theP �M precoder matrixF 0 characterize the particular
transmission scheme; for example, they contain the spread-
ing codes in CDMA or orthogonal frequencies in OFDM.
The lengthP of each code is greater thanM and this pro-
vides a diversity gain that manifests itself in different ways:
the spreading gain for CDMA and the easy equalization for
OFDM, by diagonalizing the channel matrixH0 and then
removing inter–symbol interference (ISI). Tall matrixF 0

performs a redundant mapping (see eq. (1)). Because for a
fixed bandwidth the information rate depends upon the ratio
M=P , for a fixed differenceP �M , the rate reduction can
be made arbitrarily small by selectingM sufficiently large.
However, largerM ’s require more complex equalizer and
increased decoding delay.

In the following we will assume thatP � M + L;
the interblock interference (IBI), represented by the term
H1F 0s(n � 1) in equation (3), can be canceled using ei-
ther leading zeros (LZ) at the receiver, i.e.,

F 0 := F P�M ; G0 := (0M�L GM�M ); (4)

or by appending trailing zeros (TZ) at the transmitter, in the
form of guard bits:

F 0 :=

�
FM�M

0L�M

�
; G0 := GP�M : (5)

Adopting a unified notation in both LZ and TZ cases, we
arrive at:

ŝ(n) = GHFs(n) +Gv(n); (6)

1The vectors(n) contains either the blocked symbols of one user,
fs(n)gm = s(nM + m), or themth user data stream,fs(n)gm =
sm(n).

whereF ; G are defined as in (4) or (5); matrixH is re-
spectivelyM � P in the LZ case, composed by the lastM
rows ofH0, andP �M in the TZ case, built with the first
M columns ofH0.

Equalization amounts to finding a matrixG that inverts
the matrixHF in (6). This is possible for any FIR channel
provided that

8H rank(HF ) = M: (7)

In CDMA, fading effects of multipath channels are alle-
viated by spreading the information in frequency through
spread–spectrum codes. Since in our framework the user
codes determine the columns of the precoder matrixF 0 one
can infer that this selection of the precoder guarantees that
rank(HF ) = M almost surely. Sufficient conditions on
the filterbank precoderonly that allow for channel irrespec-
tive FIR equalization are given in [7]. In this paper we will
report two special cases, that will be used to guarantee the
existence of an equalizer matrixG, irrespective of the chan-
nel zeros.

Theorem 1 (LZ–ZF equalizer) For P � M + L choose
the precoderF to be a full column rank matrix with each
column not expressible as linear combination of less than
L + 1 Vandermonde vectors2. A ZF equalizer then exists
for any channelH and isGzf = (HF )y, wherey denotes
pseudo-inverse.

Interestingly, using TZ at the transmitter, we can state the
following simple result:

Theorem 2 (TZ–ZF equalizer) For P = M + L and any
full rank matrixF , the ZF (minimum mean square error)
equalizer of any FIR channel exists and isGzf = F�1(H)y,
wherey denotes pseudo-inverse andH is a full column rank
matrix.

Note that Thms. 1 and 2 pose no constraints on the FIR
channel zeros. In contrast, FIR-ZF equalizers in [6] do not
exist for certain configurations of channel zeros, and more
important, performance degrades even when channels have
zeros close to those non-invertible configurations. If an up-
per bound�L � L is only available on the channel order,
Thms. 1 and 2 hold true with�L replacingL.

Similar to FS–CMA that equalizes jointly the output of
multiple sub-channels, FB–CMA exploits the diversity pro-
vided by the columnsffmgM�1

m=0 of the precoderF 0. The
equivalentmth FIR sub-channel is given byHfm, and can
be inverted through the vector equalizergHm (mth row ofG)
such that

gHmHf� = �(m� �); m; � 2 [0;M � 1] (8)

whereH denotes transposition and conjugation, and�(l)
stands for Kronecker’s delta.

2Vandermonde vectors are vectors of the form� = (1; �1; : : : ; �P�1).



3. BLIND SYMBOL RECOVERY WITH FB-CMA

We address here the extension of CMA to the filterbank
transceivers. Defining byem themth canonical vector, the
mth row of the equalizing matrix, that we denote asgHm,
satisfies

gHmHF = e
H
m; m 2 [0;M � 1]: (9)

The goal is to minimize with respect togHm the CMA cost
function

J(gm) = (jŝm(n)j2 �R2)
2 = (gHmx(n)x

H(n)gm �R2)
2

(10)
whereR2 := Efjŝm(n)j4g=Efjŝm(n)j2g. To derive the
gradient of quadratic forms such aszHAz with respect to
the complex column vectorz or the row vectorzH , we use
the definitions

rz(zHAz) = zHA ; rzH (zHAz) = Az (11)

so that the gradientrz(zHAz) with respect to the column
vectorz is a row vector, while the gradientrzH (zHAz)
with respect to the row vectorzH is a column vector.

Equating to zero the gradient ofJ(ĝm(n)) with respect
to gm, obtained according to (11), we obtain the following
gradient update

ĝHm(n+ 1) = ĝHm(n)� �rĝ
m
(n)J(gm); (12)

whereĝm(n) is the estimate ofgm at timen and

rĝ
m
(n)J(ĝm(n)) = (jŝm(n)j2�R2)ŝm(n)xH(n): (13)

Thms. 1 and 2 establish the existence of an inverse forany
FIR channel, which will avoid the ill–convergence cases of
CMA or FS-CMA discussed in Section 1. However, the
symbol identifiability conditions of Thms. 1 and 2 are nec-
essary but not sufficient for CMA convergence. In other
words Thms. 1 and 2 do not implyblind-identifiability when
the equalizer matrixG is estimated using CMA algorithm.
In fact, it is easy to detect that the algorithm based on (12)
only, is prone to the following shortcomings:

i) convergence to the desiredmth row ofGzf is not en-
forced; hence, a permutation between rows or even conver-
gence to the same row ofG is possible8m;

ii) unless some constraint is added, the trivial solutiongm =
0 is a local minimum;

iii) for everym, each estimatêgm(n) is affected by a phase
ambiguity. Together with ii), this implies that the CMA can
converge to

ĝHmHF = ej�meH� ; (14)

with � = 0; : : : ;M � 1. As a consequence, even in the best
case where there is no ambiguity in the indexm and thus

ĝHmHF = ej�meHm, the noise free symbol block estimate
ŝm(n) will be the input blocks(n) multiplied by the un-
known sequence(ej�0 ; : : : ; ej�M�1).

To address i) – iii) and improve the convergence rate of
CMA, our FB-CMA enforces the structure of the ZF equal-
izer estimatêG(n) by minimizing the combined cost func-
tion with relative weight�:

J (G) =
M�1X
m=0

J(gm) + ��(G) (15)

where

�(G) := tr([GHF � I ]H [GHF � I ]); (16)

and tr(A) indicates the trace of the matrixA. The tr(ABH)
defines an inner product in the space of matrices and thus
�(G) is zero if and only ifGHF = I ; this in turn imposes
(9) and thus enforces order to all rows ofG and�m = �0,
8m.

The minimization ofJ (G) can be also performed adap-
tively through a stochastic gradient approach. To derive the
gradient ofJ (G) with respect toG it is convenient to ex-
pressJ(gm) as a function of the matrixG, using the sub-
stitutiongHm = e

H
mG as follows [c.f. (10)]

J(gm) = (eHmGx(n)x
H(n)GH

em �R2)
2: (17)

Thus, the gradient ofJ(gm) with respect toGH is the ma-
trix:

rGHJ(gm) = 2(ŝm(n)�R2)eme
H
mGx(n)x

H(n)

= 2(ŝm(n)�R2)ŝm(n)emx
H(n)

� emrg
m
J(gm): (18)

The gradient with respect toGH of J (G) is thus

rGHJ (G) =

M�1X
m=0

emrg
m
J(gm) + �rGH�(G); (19)

whererGH�(G) is given by

rGH�(G) = (GHF � I)FHHH : (20)

Therefore, in force of (18) and (19), thenth adaptation step
consists of

Ĝ(n+ 1) = Ĝ(n)� �

0
B@

rg
0
(n)J(ĝ0(n))

...
rg

M�1
(n)J(ĝM�1(n))

1
CA

� � [Ĝ(n)Ĥ(n)F � I ]FHĤ
H
(n); (21)



where� is the step size and� = ��.
The last term corresponding torGH�(G), requires the

channel matrix estimatêH(n). SinceH is a Toeplitz ma-
trix defined by the channel vectorh, it is straightforward
to verify thatgHmH � hTGm whereGm is an appropriate
Hankel matrix, built with the elements offgHmgk = gm(k).
The structure of the Hankel matrix depends on whether LZ
reception or TZ transmission is adopted. In particular,Gm

in the LZ case is(L+1)�P and is the Hankel matrix with
first column(0; : : : ; 0; gm(0))T and last row(gm(0); : : : ;
gm(M�1); 0; : : : ; 0), while in the TZ caseGm is (L+1)�
M and is the Hankel matrix with first column(gm(0); : : : ;
gm(L))T and last row(gm(L); : : : ; gm(P �1)). Exploiting
the equivalencegHmH � hTGm, we can derive from (9) an
estimate of the channel impulse response,ĥm(n), based on
ĝm(n). Given ĝm(n), for eachm = 1; : : : ;M , we solve
the linear system of equations

ĝHm(n)HF = hT Ĝm(n)F � e
H
m (22)

) ĥ
T

m(n) = e
H
m(Ĝm(n)F )y:

The complexity of (22) is moderate, since requires the in-
version of an(L + 1) � (L + 1) matrix andL is usually
small and� M . Not all ĥm(n) estimates will be equally
reliable, but the CMA cost functionJ(ĝm(n)) will be ex-
ploited to weight each estimate appropriately. The simple
strategy that we propose is to estimateh as:

ĥ(n) =
1

jjhm0
jj ĥm0

(n) (23)

m0 = argmin
m0

"
1

n

nX
i=1

J(ĝm(i))

#
: (24)

From ĥ(n) we can builtĤ(n) needed for the gradient in
(21). Notice that the channel normalization in (23) avoids
the possibility of converging to the trivial solutiongm = 0,
and this, together with the minimization of�(G(n)), ad-
dresses points i), ii) and iii) raised before. To improve our
solution of the problem discussed in point iii), we force to
zero the cost function�(G) in theN th and last iteration of
the learning period of FB-CMA, by equating the equalizer
estimate toĜzf (N) = (Ĥ(N)F )y. If the equalizer has
been correctly estimated, also the channel estimate will be
accurate. Thus, the equalized vectorŝ(n) will be affected
only by a complex scale ambiguity with respect to the in-
put vectors(n), inherently present in all blind equalization
methods.

4. NUMERICAL RESULTS

In this section we will present some numerical results that
underline the main features of FB-CMA. To avoid depen-
dence of the method’s performance on the channel gain, in
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Figure 1: CMA cost fuction vs. number of iterations.

our simulations we implemented two modifications in eq.
(21): i) we normalize the step size using�=

p
xHx rather

than�; ii) when the cost function goes below0:05 we do
not normalize the channel estimate as in (22), but we sim-
ply setĥ(n) = ĥm0

(n). Furthermore, we adopt theSNR
definition SNR := tr(FHF )=�2v , where�2v is the noise
variance.

Example 1 (CMA for TZ-TDMA)An interesting special TZ-
precoder isF = I, corresponding to a conventional TDMA
transmission scheme where TZ are appended to consecu-
tive blocks of data. Contrary to conventional CMA, even
this simple modification is sufficient to meet the conditions
of Thm. 2 and guarantee the existence of a ZF equalizer
of predetermined finite order for any channel. In our sim-
ulation we considered the third order channel with impulse
responseh = (1; 1;�1;�1)T , that has a double zero in�1
and one zero in1, a case where conventional S–CMA will
experience ill convergence. Notice that downsampling by
two this channel impulse response we obtain two identical
first order channelsh1 andh2, with one common zero lo-
cated at1, a very difficult case also for FS-CMA. Fig. 1
shows the learning curve of our FB-CMA forM = 6 and
P = M + L = 9 at anSNR of 20 dB, for QPSK symbols.
The scattering diagram at the last iteration is shown in Fig.
2.The step size is� = � = 0:05. From the figures we ob-
serve the good convergence properties of the algorithm with
relatively short data records. In Fig. 3, we show the ISI after
equalization for block sizesM = (4; 6; 8). We define ISI as

ISI =
jjfGHF gj 6=ijj
jjGHF jj (25)

wherejj jj indicates Frobenious norm. Increasing the block
size increases the transmission efficiency but, as evidenced
by the curves in Fig. 3, the trade off is slower convergence.
In this case it suffices to increaseM as much as8 to experi-
ence severe degradation in performance. However, even for
bigger size blocks, the average performance over Rayleigh
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Figure 4: CMA cost fuction vs. number of iterations.

fading is much better, as will be evident from the next ex-
ample.

Example 2 (FB-CMA for downlink CDMA)In this exam-
ple we show the performance of the FB-CMA method for
a TZ precoder built with Walsh-Hadamard codes. These
codes have been selected as spreading codes for next gener-
ation cellular system standard (UMTS). Our adaptive algo-
rithm recovers the multiplexed data transmitted by the base
station and corrupted by an unknown multipath channel. We
simulated a system using QPSK symbols, withM = 12
andL = 2. The channel is generated as an FIR filter with
two Gaussian complex random taps with variance 1. TZ’s
are appended to each symbol so that the symbol duration is
P = M + L. The step sizes are� = � = 0:05 and the
SNR = 30 dB. Fig. 4 shows the curve of the CMA cost
functionJ(G), averaged over 40 Rayleigh channels, versus
the iteration number and Fig. 5 shows the corresponding
average ISI after equalization. Although, compared to ex-
isting blind adaptive multiuser detection methods, the per-
formance is extremely encouraging, there is a limitation in
the application of our method to a CDMA scenario: knowl-
edge of the precoder matrix required by our FB-CMA, im-
plies the knowledge of all possible users’ codes by every
user (there is no need to know whether they are active or
not).
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