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ABSTRACT .
Table 1:Examples foiF', (7).

Most adaptive filters are inherently nonlinear and time vari- || ALGORITHM | F.(i) ||
ant systems. The nonlinearities in the update equations of

these filters usually lead to significant difficulties in the study LMS - (i) >

. . NLMS e()/||ul]
of their performance. This paper develops a new feedback TVE -
approach to the steady-state and tracking analyses of adap- _ ¢ () .
tive algorithms that bypasses many of the difficulties en- LMMN de(i) + (1 _.5)6 (2)
countered in traditional approaches. In this new formula- SA signfe(d)]
tion, we not only re-derive several earlier results in the lit- CMA1-2 [Ry 45 — y(3)]
erature, but we often do so under weaker assumptions, in CMA2-2 y(i)[Rs — |y (i)[|?]
a considerably more compact way, and we also obtain new
results.

channel equalization). In this paper, we focus on the follow-
ing general class of algorithms:
1. INTRODUCTION
wir1 = wi+pui Fe(i), (2)

This paper develops a new approgch to the analysis of th%@erewi is an estimate fow? at iterationi, u is the step-
steady-state performance of adaptive schemes. The approaglye angr, (i) denotes a generic scalar function of the quan-
is based on showing how a generic adapuvg filter can be ities {w;, w;, d(i)}. Usually,F, (i) is a (linear or nonlinear)
represented as a cascade of elementary sections, with eagiy +ion of the so-called output estimation error, defined by
section consisting of a lossless system in the feedforward
path and a feedback interconnection. By studying the en- e(i) = d(i) — u;w; . 3)
ergy flow through the cascade, we are able to establish a_. ) ] L .
fundamental error variance relation. This relation has sev-Pifferent choices foi. (¢) result in different adaptive algo-
eral ramifications, one of which is in the context of steady- "thms. For example, Tab. 1 definBs(i) for many famous
state and tracking analyses, as we show in this paper. special cases of (2), for both blind and non-blind modes of

Thus consider noisy measuremefitéi)} that arise from ad.aptation. _In the tableS_,, Rl_, and R, are constants, and
the linear model y(2) = u;w; is the adaptive filter output.

An important performance measure for an adaptive fil-
d(i) = w;w® + (i) , (1) ter is its steady-state mean-square-erMSE), which is
defined as
o 1 1 -
vyherew isan unknowrcolumnvector that_we wish to es- MSE = lim E |e(i)|2 = lim Blo(i) + uﬂﬁilz ,
timate,v(z) accounts for measurement noise and modeling i—+00 i—00
errors, andy; denotes a nonzerow input (regressor) vec- wherew; = w® — w; denotes the weight error vector. Un-

tor. Many adaptive algorithms have been developed in theder the often realistic assumption that (see, [1]-[4]):
literature for the estimation a#° in different contexts€.g., "

echo cancelation, system identification, blind and non-blindM The noise sequence {v(i)} is iid and statistically
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we find that theMISE is equivalently given by qi O Wit1 — di
MSE = o2 + lim E |u;w;|* . (4)
1— 00

Now the standard way for evaluating (4), and which dom-

inates most derivations in the literature, is the following. |
First, one assumes, in addition £01, that the regression Vv 1T =1
vectoru; is independent ofv;. Then the abov®SE be- 776
comes fica
MSE = 02 + lim Tr(RC;) , (5)
1— 00
whereC; denotes the weight error covariance mat€ix, = Figure 1:Lossless mapping and a feedback loop.

Ew;w}, andR = Eufu; is the input covariance matrix.
As is evident from (5), this method of computation requires
the determination of the steady-state valu€pf sayC...
Finding C, is a burden, especially for adaptive schemes
with nonlinear update equations, which is the case for most

estimation errors,

ea(i) = lli‘ili ) 6p(i) = uiv~vi+1 .

of the algorithms listed in Tab. 1. This explains why the Using the data model (1), it is easy to see that the errors

steady-state analysis of these algorithms in the literature iS{e(i), eo(i)} are related via(i) = e, (i) + v(i). If we fur-

more advanced in some cases than in others. It also eXiher subtractv® from both sides of (2) and multiply by;

plains why such analyses have often been carried out seprom the left, we also find that the errofis, (i), eq(i), e(i)}
arately for each individual algorithm and under varied as- 4y related via:

sumptions. However, it would be very useful to develop a

unifying framework that can handle a variety of algorithms. e, (i) = eq(i) — ——F, (i), (6)
This paper takes an important step in this direction. More fi(7)
specifically, the following are the novel contributions of this

work: where we defined, for compactnegs;) = 1/||u;||*>. Sub-
' stituting (6) into (2), we obtain the update relation
1. We develop a new feedback approach for evaluating

the MSE of a large class of adaptive schemes. This Wir1 = Wi — A(i)uf[eq (i) — ep(9)] - @)

approach distinguishes itself from earlier approaches

in that it bypasses the need for working directly with BY evaluating the energies of both sides of this equation we

C; or with its limiting value. obtain [5, 6]

2. The feedback approach notonly allows usto re-derive ||, 1| + fi(3)|eq (i)|? = ||W:l]* + @(3)|ep(0)]* . (8)
several earlier results in literature in a unified manner,
but it does so with considerably less effort and often This energy conservation relation holds for atlaptive al-

under weaker assumptions. gorithms whose recursions are of the form given by (2).
. No approximations or assumptions are needed to establish
- The approach. also allows us tq denvg severgl neW(8); it is an exact relation that shows how the energies of
results, espeuglly for adaptive filters with nonlinear the weight error vectors at two successive time instants are
upd_ates fo.r which approaches that reqditeare not related to the energies of the a-priori and a-posteriori esti-
easily applicable. mation errors. The relation also has an interesting system-
. The approach further establishes the significant con-theoretic interpretation. It establishes that the mapping from
clusion that the tracking analysis of adaptive schemes{v”vi, p(i)ep(i)} to {v”viﬂ, ﬂ(i)ea(i)} is energy preserv-
can be obtained almost by inspection from the results ing (or lossless). Furthermore, combining (8) with (6), we
in the stationary case. In contrast, analyses for bothsee that both relations establish the existence of the feed-
the stationary and non-stationary cases have alwayshack configuration shown in Fig. 1, whefedenotes a loss-
been carried out separately in the literature. less map ang ! denotes the unit delay operator. [The vari-
ableq; that appears in the figure should be set to zero at this
first part of the paper. It will be nonzero when we discuss

2. FUNDAMENTAL ENERGY RELATION later the tracking performance of an adaptive filter. We use
the same figure for both cases to emphasize that they will

We start by noting that with any adaptive scheme we can only differ by one additional disturbance represented by
associate the following so-called a-priori and a-posteriori



Relevance to Steady-State Performance Analysis 1. For sufficiently small,, we can assume that the term
112 E ||lu;]|%|eq (i) |2 is negligible relative to the second

As mentioned in the introduction, relation (8) has sev- term on the right-hand side of (10), so that

eral ramifications. It was used in [5, 6] (and in some of the

references therein) to study the robustnesslandtability ¢tms = o2 qy(g), (11)

of adaptive filters. Here we show its significance to steady- 2

state analysis. This is the same result obtained in [7] for small values
Recall that we are interested in evaluating M8E of of u but here we get it in a much simpler way.

an adaptive filter once it reaches steady-state. To do so, we
simply note thatt |w;1||? = E||w;||? in steady-state, so
that by taking expectations of both sides of (8) we obtain
the equality

2. For larger values qgf, equation (10) can be solved by
imposing the following (often studied) assumption:

A.2 At steady state, n?||u;||? is statistically inde-
E fi(i)|eq (1) * = E (i) ey (3) - pendent of |e, (i)|2.

Using (6), the above collapses to the followfugdamental
error variance relatiorin terms of{e, (i), v(¢) } only (recall
thate(i) = e, (i) + v(7)):

This assumption in fact becomes very realistic for
long filter lengths. Furthermore, it beconmsctfor
the case of constant modulus data that arises in many

i 2 adaptive filtering applications. Using.2, and (10),

E (i) lea(i)]* = E (i) [ea (i) — mFe(i) ) we directly obtain

. , uo? Tr(R)
This equation can now be solved for the steady-state excess (IMS = v — o (12)
mean-square-erroEMSE): 2 - pTr(R)

A L o This is also a well-known result (see [8]) but is ob-
(= }ggo Ele.()]” . tained here very directly and under the single assump-
tion A.2.

Observe from (4) that the desir®SE is given byMSE =

02 + ¢, so that finding, i:s equivalent to finding thMSE. 3.2. TheLMF and LMMN Algorithms

Moreover, observe again that (9) is eractrelation that

holds without any approximations or assumptions (except For the least-mean mixed-norictN\IMN) algorithm, we have

for the assumption that the filter is in steady-state). F.(i) = de(i) + (1 —5)e3(i). The least-mean fourtt.(F)
The procedure of finding thEMSE through (9) com-  algorithm corresponds to the special case 0. Introduce,

pletely avoids the need for evaluatiRg|w . ||?. Thisisbe- ~ for compactness of notation,

cause in steady-state, and in view of the energy-preserving

T _ N4 _ 4 -\16 __ ¢6
relation (8), the effect of the weight error variance is can- 6=1-46, Ep@)|* =&, EP@E =& .
|
celed out We again consider two cases. In both cases, we make the
reasonable assumption that in steady-§tatg)|> < |v(i)|?.
3. STEADY-STATE ANALYSIS We also assumaA.1.
We now apply the above general procedure to various adap- 1. For values of: that are small enough so that the term
tive algorithms from Tab. 1. Due to space limitations, we 1% B ||u;||?|e (i) |* could be ignored, we obtain
omit some of the details and only highlight the main steps 5 o ces | w26
in the arguments. The reader will soon realize the conve- (MmN _ K (‘5 o, + 200, +9 5v> Tr(R) . (13)
nience of working with (9). 2 6 + 3é07
. This is the same result obtained in [9], but we get it
3.1. TheLMS Algorithm here more directly and under weaker conditions. For
ForLMS we haveF. (i) = e(i) = e, () +v(7). Substituting ¢ = 0, the above expression collapses to
into (9) and usin@A.1, it follows immediately that ¢o
=4 () m(m), (14)
JU

265 = 2 B (|[will? ea (i)) + p%02 Tr(R) . (10)
which is the same expression obtained in [10] by us-
To solve for¢™MS we consider two cases: ing the so-called independence assumptions.



2. For larger values ofi, and usingA.2 again, we get
the following new expressions for tleVISE:
ctumn _ u(6%0y + 200¢, + 6°¢5) Tr(R)
2(6 + 3802) — u(62 + 65502 + 985¢4) Tr(R)

_ p€lTr(R)
602 —9uéiTe(R)

CLMF

3.3. TheNLMS Algorithm

For the normalized MS algorithm,F.(i) = e(i)/|lul|?.
In this case, relation (9), and assumptidri, lead to the
equality

e-ne () =2 ()

Again this is an exact equality. We consider two cases.

(15)

1. Under assumptioA.2, we have

= (fiute) = 0" ® ()

so that (15) leads to the expression

2
¢NLMS (ZMLTUM) ) (16)

This result is in facexactfor constant modulus data.

Observe also that it is independent®f

2. In some works (see,g.,p. 443 of [2]), the following
approximation is instead used

E (Iea(i)P) ~ Elea@)l?
[Jws | Bllui* ’

in which case (15) leads to

CNLMS _ /103 ) E <| 1 (17)

@ s |uz»||2) TR

Substituting into (18) and solving fd# |e, (¢)|?, we find that

CSA:g-

2 (a+ a2+40‘2’)’

(19)
wherea = \/Z,Tr(R). This is the same result that was
obtained in [12] by using the independence assumptions.
Here we have shown that the same result holds without any
independence assumptions!

3.5. The CM Algorithms

Similar analyses can be carried out for constant modulus
(CM) algorithms. The details are provided in [14]. Here we
only briefly comment on one particular case for the sake of
illustration. Assumes(z) = 0 (and, henceg, (i) = e(i))

and define

o =Eld@)]*, & =Eld@O)*, & =Eld0) .

Let R, = &;/o3 and assume also that all data are real-
valued (the complex case is studied in [14]). Define further,
for compactness of notationyi) = y(i)(Rz — |y()]?).
Then relation (9) yields foEMA2-2,

2uEeq(i)2(i) = p? EflJu]|*|2(i)*] -

To solve this equation fdt |e, (i) |2, we make the following
reasonable (and common) assumption.

A.3 The signals d(:) and e, (i) are independent in steady-
state so that Ed(i)e, (i) = 0, since the signal d(7) is
assumed zero mean.

Using assumption&.2 andA.3, yields for small enougp:

I <U§R§ — 2R &5 + €5

CCMA272 _
2 2(302 — Ry)

) Tr(R) .

This is a slightly different expression from the one obtained
in [15] via a different (and less direct) route. It was shown

This is the same expression obtained in [13] in a very in [14] that the above expression leads to a better approxi-

different (and also less direct) way.

3.4. The Sign Algorithm

For the sign algorithm3A), we haveF. (i) = signe(i)]. In
this case, relation (9) leads to the equality:

Blea(i)sign(ea(i) +v(@)] = S Tr(R) . (18)

By assuming that, (i) andwv(i) are jointly Gaussian, and
by usingA.1 and Price’s theorem [11], we obtain
2 E |eq (i)

oZ + Elea())P |

E [eq(7)sign(eq () + v(i))] =

mation for theMSE. More discussion on, and neBMSE
expressions for, oth€ZM algorithms can be found in [14].

4. TRACKING ANALYSIS

In a nonstationary environment, the d4t#:) } is assumed

to arise from a linear model of the fordfi) = u,w? +v(7),
where the unknown systeme? is now time-variant. It is
often assumed that the variationwf is according to the
modelw?, ; = w¢ + q;, whereq; denotes the random per-
turbation. The purpose of the tracking analysis of an adap-
tive filter is to study its ability to track such time-variations.
We now show how to evaluate the tracking performance of



Table 2:Expressions for the EMSE in a nonstationary environment and gmall

| ALGORITHM | EMSE | AssumpTiOns |
LMS 0 T Tr(Q) + suol Tr(R) 1,4,5.
NLMS L Tr(R) TH(Q) + L2t E (ﬁ) Tr(R) 1,2,45
LME pt Tr(Qﬁ):gugs Tr(R) 1,4,5
LMMN T %(Q)w[;ﬁ;ﬁﬁ%ﬁ&ﬁ] Te(R) 145
SA § (ﬁ +4/82 + 403), B =% [p ' Tx(Q) + nTr(R)] | 1,4,5, Gaussian errors
CMA2-2 pt Tr(Q)Jru(Z(/'(ifg:;I:)z&ﬁ%S) Tr(R) 1,2.3 4.5

an adaptive algorithm by the same feedback method pro-the EMSE results for tracking in Tab. 2 for the case of

posed in this paper.

small i (for brevity). The expressions fatMF, LMMN,

For this purpose, we first redefine the weight error vec- andCMA2-2 are new.

tor asw; = w? — w;, and the a-posteriori estimation error
asep (i) = u; (Wit1 — q;). Thenw; satisfies

Moreover, by differentiating thEMSE expressions in
Tab.

2 with respect t@, we obtain several new expressions

for the optimum step-sizes that achieve the lovieMISE.

Wit1 = Ww; — p(i) u Fe(t) +q - (20)  Due to space limitations, we do not list these expressions
. . here.
If we further multiply (20) byu; from the left, we obtain
that (6) and (7) still hold for the nonstationary case, while 5. REFERENCES
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