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ABSTRACT

Blind equalization in noisy multi-user channels has
met with increasing attention with the advent of multi-
access digital communication systems. We develop a uni-
fied formulation which combines the desired sources and
the backgound noise into a common convolutional model.
We then obtain a characterization of stationary points for
a family of blind criteria in undermodeled cases, which
incorporates the influence of differening source statistics
and background noise correlation properties. We derive
also aglobal step-size bound which ensures convergence
of a gradient search procedure, and confirm that the super-
exponential algorithm results from an optimal choice of
this step-size parameter.

1. INTRODUCTION

Many methods in blind equalization can be understood
as minimum entropy methods, first developed by Donoho
[1], and subsequently rediscovered [2] and refined [3] by
Shalvi and Weinstein. Extensions of this technique to
multiple source deconvolution problems may be found in
[5], [9], and equivalences with the constant modulus (or
Godard) algorithm have also been placed in evidence [4].

A key result from [4] (mono-source case) and [5]
(multi-source case) asserts that each extremum of a par-
ticular minimum entropy criterion yields an ideal equal-
izer, i.e., giving a combined (channel-equalizer) impulse
response having a sole nonzero term. The validity of
this result, however, hinges strongly on the assumption
that an arbitrary configuration of the combined (channel-
equalizer) impulse response can be attained, including thus
any ideal solution which would restore perfectly the trans-
mitted sequence.

In practice, the presence of channel noise, as well as
co-channel interference due to multiple users, will pro-
hibit any equalizer setting from restoring perfectly the
transmitted sequence, and the reconstruction error tends
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Figure 1: The channel-equalizer cascade, including noise.

to worsen with shorter equalizer lengths. The behavior
of blind equalization algorithms in these “undermodeled”
cases is not as clearly understood, as minimum entropy
criteria are usually non convex, exhibiting numerous local
minima.

The intent of this work is characterize the station-
ary points of a family of minimum entropy criteria, for
the multi-source noisy channel setting depicted in Figure
1, and using a finite (and generally insufficient) length
equalizer. We shall also examine a gradient search pro-
cedure and obtain a step-size bound ensuring convergence
regardless of the initialization point, and verify that the
super-exponential algorithm results from a certain “opti-
mal” choice of the step-size.

2. PROBLEM STRUCTURE

We consider a multichannel noisy deconvolution problem,
depicted in Figure 1, in which the observed vector process
{ un}, having P components, is of the form

(P l) un = F(z)an +bn

where:

• The source signals {ai,n} which comprise the vec-
tor an are each independent, identically distributed
(i.i.d.) random sequences, presumably non-Gaus-
sian, and mutually independent as well. We assume,



with no loss of generality, that each is scaled to unit
variance:E[a2

i,n] = 1.

• The transfer matrixF(z) is stable and causal:

F(z) =
∞∑

k=0

Fkz
k, with

∞∑
k=0

‖Fk‖ < ∞.

Herez (rather thanz−1) denotes the unit delay oper-
ator: zan = an−1. The productF(z)an may then be
interpreted as the convolution sum

F(z)an =
∞∑

k=0

Fkz
kan =

∞∑
k=0

Fk an−k

• The background noise vectorbn is Gaussian, and
independent of the source signals.

If the noise term is indeed Gaussian, then we may write
an innovations model of the form

bn = L (z)αn =
∞∑

k=0

L k αn−k

where the vector process {αn} is normalized white noise:

E[αn αT
m] =

{
I , n= m;
©, n 6= m.

Since {αn} is white and Gaussian, each sample is inde-
pendent and identically distributed (i.i.d.).

We can now combine the signal and noise terms into
a common convolutional model as

un = F(z)an +L (z)αn

= [ F(z) L (z) ]︸ ︷︷ ︸
F (z)

[
an

αn

]

=
∞∑

k=0

[ Fk L k ]︸ ︷︷ ︸
Fk

[
an−k

αn−k

]

Some of the sources (namely, the {αi,n}) may be Gaussian,
while the others (namely, the {ai,n}) may be non-Gaussian.

The equalizer in Figure 1 is a multi-input/single-output
transversal filter:

yn =
M∑

k=0

gkun−k =
M∑

k=0

gkz
kun = g(z)un.

Here each impulse response termgk is a row vector of
P elements. We may write this in terms of the original

source vector
[ an

αn

]
as

yn = g(z)un

= g(z)F (z)

[
an

αn

]

= s(z)
[

an

αn

]

=
∞∑

k=0

sk

[
an−k

αn−k

]

Each termsk is a row vector having as many entries as
there are sources (both Gaussian and non-Gaussian). The
impulse response sequences0, s1, s2, . . . , is thecombined
(channel-equalizer) impulse response. It may be expressed
as the convolution of the channel and equalizer impulse
response sequences {Fk}∞k=0 and {gk} M

k=0, respectively:
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We observe that irrespective of how the equalizer coeffi-
cients {gk} are chosen, the combined response vectors is
restricted to the column space (in`2) of the channel con-
volution matrixF ; as in [4], we call this linear subspace
the set of attainable combined responses, denotedSA:

SA =
{

s : s= FG, for some equalizer setting {gk}
}

.

The projection operator from̀2 to SA is denoted

PA = F (FTF )]FT,

where the superscript] denotes (pseudo-) inversion. A
givens is then attainable (s∈SA) if and only if PAs= s. If
PA = I (the identity), then an arbitrary configuration of the
combined response vectors is attainable; this is called the
sufficient order case [6]. If, on the other hand,PA 6= I , then
only a proper subset of̀2 can be reached by varying the
equalizer coefficients; this is called theundermodeled case.
With nonzero noise, the transfer matrixF (z) has more
inputs than outputs, so that undermodeling will prevail.

3. EQUALIZATION CRITERION

We consider the equalization criterion [1], [2], [5], [6]

J2p =
cum2p(yn)

[cum2(yn)]p
, p= 2,3,4, . . . ,
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Figure 2: Equivalent multi-input/single-output representa-
tion, in terms of the combined transfer functionsSi(z), one
for each source.

in which cum2p(·) denotes the cumulant of order 2p of the
argument [7]; one seeks to maximize|J2p|.

To simplify some developments to follow, let us invoke
some notational “tweaking”. Suppose there areK sources
{ ai,n}, i = 1, 2, . . . ,K, and rename the Gaussian innova-
tion {α1,n, . . . , ,αP,n} as {aK+1,n, . . . ,aK+P,n}. This allows us
to write the equalizer output as

yn =
K+P∑
i =1

∞∑
k=0

si,k ai,n−k,

{
i = source index;
k = time delay index;

=
K+P∑
i =1

Si(z)ai,n

in which Si(z) =
∑∞

k=0 si,k zk is the transfer function map-
ping theith sourceai to the equalizer output, as in Fig. 2.

As yn is a weighted sum of independent random vari-
ables, and one may show that [7]

cum2p(yn) =
K+P∑
i =1

cum2p(ai,n)︸ ︷︷ ︸
∆= γi

∞∑
k=0

s2p
i,k .

Note that if the noise innovation is indeed Gaussian, then
the corresponding cumulants vanish (γK+1 = · · · = γK+P =
0). The development to follow, however, will allow these
cumulants to differ from zero.

Writing the equalization criterion in terms of the com-
bined responses and the source cumulants {γi} gives

J2p(s,{ γi}) =
cum2p(yn)

[cum2(yn)]p
=

K+P∑
i =1

γi

∞∑
k=0

s2p
i,k(

K+P∑
i =1

∞∑
k=0

s2
i,k

)p (1)

If γ− and γ + denote the most negative and most positive
source cumulants, thenγ− ≤ J2p ≤ γ +. Moreover,J2p is
radially invariant:

J2p(βs,{ γi}) = J2p(s,{ γi}) , for all scalarsβ 6= 0.

We may thus scales to unit `2 norm: ‖s‖2 = 1.
We now allows to vary overSA, and we seek the sta-

tionary points ofJ2p overSA. To simplify some notations
to follow, we will write J2p(s) for J2p(s,{ γi}).

The directional derivative of the functionJ2p at s, with
respect to a directional vectorr , is given by [8]

J′2p(s; r )
∆= lim

t→0

J2p(s+ tr )−J2p(s)
t

wheret is a positive real scalar that tends to zero. If the
function J2p is differentiable ats, then one has [8]

J′2p(s; r ) = 〈∇J2p(s),r 〉

where∇J2p(s) is the gradient ofJ2p at s, and where〈·, ·〉
denotes the standard inner product in`2: 〈s,r 〉 =

∑
k sk rk.

Now, since the vectors+ tr spansSA asr spansSA, a
given vectors∈ SA is a stationary point ofJ2p overSA if
and only if the directional derivative ofJ2p at s vanishes
for all directional vectorsr in SA:

J′2p(s; r ) = 〈∇J2p(s),r 〉 = 0, for all r ∈ SA. (2)

Let now v be an arbitrary vector iǹ2. Its projection
PA v lies inSA, and asv spans̀ 2, the projectionPAv spans
SA. As such, the orthogonality relation (2), characterizing
any stationary points, is equivalent to

for all v ∈ `2, 0 = 〈∇J2p(s),PAv〉 = 〈PA∇J2p(s),v〉,

in which the second equality follows from symmetry of
PA. This latter expression is equivalent to

PA∇J2p(s) = 0.

It now suffices to calculate the gradient using (1), but
recalling our scaling assumption‖s‖2 = 1:

[∇J2p(s)] i,k =
∂J2p(s)
∂si,k

= 2p
(

γis
2p−1
i,k −J2p(s)si,k

)
.

We may stack these scalars into a vector according to

∇J2p(s) = 2p







γ1s2p−1
1,0
...

γK+Ps2p−1
K+P,0

γ1s2p−1
1,1
...

γK+Ps2p−1
K+P,1

...



−J2p(s)




s1,0
...

sK+P,0

s1,1
...

sK+P,1
...







= 2p
(
Cs�(2p−1)−J2p(s)s

)
in which:



• the vectors�(2p−1) denotes the Hadamard power of
order 2p−1:

[s�(2p−1)] i,k = (si,k)
2p−1;

• C is a diagonal matrix containing copies of the source
cumulants of order 2p:

C=




C ©
C

C

© . . .


 , C =


 γ1 ©

. . .
© γK+P


 .

Now, sinces∈ SA, we havePA s= s, and the condition
PA ∇J2p(s) = 0 can be rephrased as:

Theorem 1 A candidate s∈ SA (scaled to unit `2 norm) is
a stationary point of J2p(s) over SA if and only if

PA(Cs�(2p−1)) = J2p(s)s.

This generalizes the characterization of stationary points
obtained previously in the mono-source case [6].

If we set r = βs, whereβ is any nonzero scalar, then
we find that

PA(Cr�(2p−1)) = J2p(s)β2p−1s= [J2p(r )β2p−2] r ,

so thatr = βs satisfies an equation of the same structure
as in Theorem 1, and hence is also a stationary point. This
is as expected, sinceJ2p(r ) = J2p(βs) = J2p(s).

If we return to the sufficient order case (PA = I ), the
characterization of stationary points then simplifies to
Cs�(2p−1) = J2p(s)s, which reads componentwise as

si,k

(
γi (si,k)

2p−2−J2p(s)
)

= 0, for all i,k.

This says that all nonzero terms, once scaled according to
the source cumulants, share a common amplitude. If two
or more terms are nonzero, then the stationary point may
be shown to be a saddle point (as in [5]), and hence not
a candidate convergent point for an algorithm which seeks
an extremum ofJ2p.

4. A GRADIENT SEARCH PROCEDURE

Let s(0) be an initial attainable setting in the combined
response space, scaled to unit`2 norm. We consider a
gradient search procedure of the form

v(k+1) = s(k)±µkPA∇J2p(s(k))

= s(k)±µk 2pPA

(
Cs�(2p−1)

(k) −J2p(s(k))s(k)

)
s(k+1) = v(k+1)

/‖v(k+1)‖2

in which the`2 normalization of the second line is intro-
duced becauseJ2p is radially invariant; the sign in front of
µk is chosen according to whether the algorithm is to as-
cend (±µk → +µk) or descend (±µk →−µk). We observe
that with the particular step-size choice

µk =
1

2p|J2p(s(k))| (3)

the gradient algorithm simplifies to

v(k+1) = ±PACs�(2p−1)
(k)

s(k+1) = v(k+1)
/‖v(k+1)‖2

which is recognized as the super-exponential algorithm;
see [3, 9] for implementation aspects.

The problem considered is to deduce the range for the
step-size parameterµk which ensures convergence of the
sequence {s(k)} to an extremum ofJ2p. Two cases may
be distinguished. For the chosen order 2p, the source cu-
mulants may all be nonpositive:γi ≤ 0 for all i (resp.,
nonnegative:γi ≥ 0 for all i), or they may be mixed, i.e.,
some positive and others negative. The former case will be
assumed in the developments to follow, as it is of greater
practical interest. For example, with order 2p = 4, most
usable source constellations yield negative fourth-order cu-
mulants. The following result extends that from [10] to the
multi-source setting; for notational convenience we write
J2p(k) for J2p(s(k)).

Theorem 2 Suppose all cumulants are nonnegative: γi ≥ 0
(resp., all cumulants nonpositive: γi ≤ 0). If s(k) is not a
stationary point of J2p, the inequality |J2p(k+1)|> |J2p(k)|
holds whenever µk lies in the range

0 < µk <
1
p

|J2p(k)|
2|J2p(k)|2−‖PACs�(2p−1)

(k) ‖2
2

.

Remark 1: We can also check that|J2p(k)| ≤ ‖PACs�(2p−1)
(k) ‖2,

since from the Cauchy-Schwarz inequality we have

|J2p(k)|=
∣∣∣〈s(k),PACs�(2p−1)

(k) 〉
∣∣∣≤ ‖s(k)‖2︸ ︷︷ ︸

1

·‖PACs�(2p−1)
(k) ‖2

with equality iff s(k) andPACs�(2p−1)
(k) are colinear. As such,

the upper bound forµk can be lower bounded as

1
p

|J2p(k)|
2|J2p(k)|2−‖PACs�(2p−1)

(k) ‖2
2

≥ 1
p|J2p(k)| ≥

1
p max

i
|γi |

since|J2p(k)| ≤ maxi |γi | at each iteration. Any fixed step-
size in the range 0< µ < 1/(pmaxi |γi |) will thus ensure
convergence of|J2p| to a local maximum. �

The proof treats the nonnegative cumulant case, for
which 0≤ J2p ≤ γ +, since the nonpositive cumulant case



is quite similar. Letx be a free vector iǹ2, and introduce
the scalar-valued function

M2p(x) =
K+P∑
i =1

γi

∞∑
k=0

x2p
i,k ≥ 0,

which assumes the same form as the numerator ofJ2p.
One can verify that this function is convex, i.e., for two
choicesx1 andx2 in `2,

M2p

(
λx+ (1−λ )x2

)
≤ λM2p(x1)+ (1−λ )M2p(x2),

for 0≤ λ ≤ 1.

As M2p(x) is continuous throughout̀2, we can intro-
duce its gradient∇M2p(x) as

∇M2p(x) =




∂M2p(x)/∂x1,0
...

∂M2p(x)/∂xK+P,0

∂M2p(x)/∂x1,1
...

∂M2p(x)/∂xK+P,1
...




= 2pCx�(2p−1)

Convexity of the functionM2p(x) can be shown [8] to
induce the inequality

M2p(x+ ∆x)≥M2p(x)+ 〈∇M2p(x),∆x〉,

for all x and∆x in `2 (and not just for∆x chosen “small”).
This inequality thus applies to the particular choices

x = s(k), andx+ ∆x = s(k+1), giving

M2p(s(k+1))−M2p(s(k)) ≥ 2p〈Cs�(2p−1)
(k) ,s(k+1)−s(k)〉.

Now since boths(k) and s(k+1) have unit`2 norm, we can
check that

M2p(s(k)) =
M2p(s(k))

‖s‖2p
2

= J2p(k),

and similarly,M2p(s(k+1)) = J2p(k+1) whenever‖s(k+1)‖2 =
1. Our inequality now reads as

J2p(k+1)−J2p(k)≥ 2p〈Cs�(2p−1)
(k) ,s(k+1)−s(k)〉, (4)

and it suffices to deduce which values ofµk render the
right-hand side positive. This takes the form

〈
Cs�(2p−1)

(k) ,
s(k) +µkPA∇J2p(s(k))
‖s(k) +µkPA∇J2p(s(k))‖︸ ︷︷ ︸

s(k+1)

〉
> 〈Cs�(2p−1)

(k) ,s(k)〉︸ ︷︷ ︸
J2p(k)

Solving for µk compatible with this inequality leads to

0 < µk <
2J2p(k) 〈Cs�(2p−1)

(k) −J2p(k)s(k),PA∇J2p(k)〉

J2
2p(k)‖PA∇J2p(k)‖2

2− 〈Cs�(2p−1)
(k) ,PA∇J2p(k)〉2

=
1
p

J2p(k)

2[J2p(k)]2−‖PACs�(2p−1)
(k) ‖2

2

as claimed. �
Remark 2: The right-hand side of (4), when positive, rep-
resents the worst-case increase in the functionJ2p at each
iteration. The value ofµk which maximizes this worst-case
increase is found asµopt

k = 1/[2pJ2p(k)]. This is the step-
size value giving rise to the super-exponential algorithm;
cf. (3).
Remark 3: We have observed monotonic convergence us-
ing this step-size range for the mixed cumulant case as
well, although a proof for this case remains open.
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