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ABSTRACT

In this paper, we present an approach which significantly
improves the performances of automatic speech recognition
systems (ASRSs) dedicated to Arabic language. We propose to
combine a version of Learning Vector Quantization (LVQ) and
Time Delay Neural Networks (TDNNs) using an autoregressive
version (AR) of the backpropagation algorithm. The underlying
idea of this approach consists in the incorporation of AR-TDNNs
in a hybrid structure in order to give the LVQ-based system the
ability to overcome failures due to the language particularities
such as emphasis, gemination and vowel lengthening. The test
corpus is composed of subsets taken from an Arabic database.
The results show that the proposed LVQ/AR-TDNN system
achieves a highly recognition rate compared to the baseline LVQ-
based system.

1. PROBLEMATIC OF COMPLEX ARABIC
PHONEMES RECOGNITION

The present systems of automatic speech recognition (ASR)
dedicated to Arabic remain confronted to the problems of the
strong inflexion of the language. This syntactic particularity is
complicated by the poverty of the Arabic vocalic system which is
partially compensated by the semantic relevance of the vowels
lengthening. In the consonantal system, another phonetic
complexity resides in the presence of features as subtle as
emphasis and gemination [1]. Unfortunately, the developed ASR
systems do not take into account these phonetic properties in
order to limit the drop of their performances. This has as a
consequence the quasi absence of any commercial product
dedicated to Arabic language while we are observing a boom of
which is actually called ‘language industries’.

Therefore, in the case of an emphatic vs. non-emphatic
opposition, an efficient ASR system must be capable to
distinguish, for example, between the two words: /sa:ra/ (to walk)
and /sa:ra/ (to become), where an emphasis is observed over /s/
fricative. The present ASR systems cannot easily raise this
ambiguity. In the following example illustrating the gemination
case, we require the ASR to discriminate between the two words:
/nafaδa/ (to escape) and /naf:aδa/ (to execute), where the /f/
fricative is geminated. A similar problem is encountered in the
vocalic system. For instance, the two words: /suru:ru/ (happiness)
and /sururu/ (umbilical cord) differ only by the lengthening of the
second vowel /u/. We require the recognition system to detect this
vowel without altering its temporal property. It is proposed to be

done by an original combination of Waibel’s TDNN [12] and a
modified version of the Kohonen’s LVQ algorithm [7].

2. AUTOREGRESSIVE TIME DELAY NEURAL
NETWORKS (AR-TDNN)

Contrarily to feedforward networks, recurrent networks are
generally trickier to work with, but they are theoretically more
powerful, having the ability to represent temporal sequences of
unbounded length. Because speech is a temporarily unstable
phenomenon, we consider recurrent networks to be more
adequate than feedforward networks. Another consideration
related to phonetic context influence leads us to use an
autoregressive version of backpropagation algorithm (AR-back
propagation) proposed by Russel [9]. This type of networks can
in principle captures naturally the co-articulation phenomenon of
speech. Some studies show that they are very performing in the
context-dependent labeling. However, this power turns out to be
source of disappointment in the case of phoneme time shifting.
The approach we are investigating proposes to integrate in
addition to the AR component, a delay component similar to the
one used by Waibel’s TDNN [12]. Through this combination, we
expect that the ability of the system to discern the phonological
length even in a strong coarticulation context will be increased.

The model described by Russel et al includes an autoregressive
memory which constitutes a form of self-feedback where the
output depends on the current output plus a weighted sum of
previous outputs. Then, the classical AR node equation is given
by:

yi(t) is the output of node i at time t. f(x) is the tanh(x) bipolar
activation function, P is the number of input units. M is the order
of autoregressive prediction. Weights wi,j biases and coefficients
ai,n are adaptive and are optimized in order to minimize the output
error. Our proposition consists in incorporating a time delay
component on the inputs nodes of each layer and then equation
(1) becomes:

Where L is the delay order at the input.
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Feedforward and feedback weights were initialized from a
uniform distribution in the range [-0.8, 0.8]. A neuron of the AR-
TDNN configuration is shown in Figure 1.

Figure 1. A neuron from a hidden layer of an autoregressive
time delay neural network

AR backpropagation learning algorithm performs the
optimization of feedback coefficients in order to minimize the
mean squared error noted E(t) and defined as:

Where di is the desired value of the ith output node.

The weight and feedback coefficient changes noted respectively
∆wj,i,m and ∆ai,n are accumulated between an update interval
[T0,T1]. The calculation of this variations is detailed in [9]. In the
proposed AR-TDNN version, the update interval [T0,T1] is fixed
such as it corresponds to the time delay of the inputs. So, it T if
the frame duration, then the updated feedback coefficient is
written as follows:

The weights are also written :

Hence, this type of networks which combines both input delays
and feedback of outputs can “remember” past situations and
performs context sensitive decisions. We must recall that AR-
TDNN system is trained by using the Nguyen-Widrow
initialization conditions [8].

The TDNN part of the system consists of three layers. Each
neuron in the first hidden layer receives input from the
coefficients in the three-frame window of the input layer. The
input is centered around the hand-labeled phones.

Experiments using approximately 6000 phonemes uttered by six
speakers are carried out in order to compare the performances
between the AR-TDNN configuration and the monolithic
(simple) connectionist structure. The monolithic architecture
performs recognition of all macro classes and features by a
simple neural network using the standard backpropagation
learning procedure.

The results given in Table 1 show that in the case of complex
Arabic macro-classes the AR-TDNN with a recognition rate
average of 86% overpasses significantly the standard
backpropagation-based system with globally 70% recognition
rate.

            Class
System

Long/brief
Vowels

Plos. Fri. Nas. Liq. Emp. Gem.

Simple NN 61.3 75.7 77.2 73.4 71.8 70.0 60.9

AR-TDNN 91.9 83.2 89.1 83.6 79.1 84.2 88.8

Table 1. Recognition rate (%) of simple and AR-TDNN
structures. (Vow: Vowel, Plos: Plosives, Fri: Fricatives, Nas:
Nasals, Liq: Liquids, Emp: Emphatic, Gem: Geminate).

A significant difference of accuracy in favor of AR-TDNN is
observed in the case of semantically relevant lengthening of
phoneme. This experiment confirms the capability of the AR-
TDNN configuration to deal with features as subtle as emphasis,
gemination and vowel extension.

3. OPTIMAL USE OF LVQ TRAINING DATA

LVQ is a nearest neighbor pattern classifier based on competitive
learning and it provides an important gain in learning speed in
comparison with neural networks.

In a speech application, the principle is that each phoneme
category to be learned is assigned a number of reference vectors
having the same dimension as the input vector. In the learning
phase, LVQ attempts to adapt the positions of the reference
vectors such as each input vector has a reference vector of the
right category as its closest reference vector. In the recognition
step, the unknown input vector will be categorized by finding the
reference vector that is closest to that input vector.

Let X(t) be a sample of speech sequence and let V(t) represents a
number of codebook vectors which approximate the input vector
X(t) by its quantized values. Many codebook vectors can be
assigned to each class of input vectors. X(t) belongs to the same
class to which belongs its nearest V(t) noted Vi(t). The i index
represents the class.

Starting with defined initial values by using the K-means
clustering, the following equations define the optimized LVQ1
(OLVQ1):
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• Vi (t+1) = Vi (t) + αi(t) [X(t) – Vi(t)]
                                        if   X and Vi ∈ same class
• Vi (t+1) = Vi (t) - αi(t) [X(t) – Vi(t)]
                                         if  X and Vi ∉ same class
• αi(t) = αi(t-1)/(1 + z(t)αi(t-1))

z(t)=+1 if the classification is correct and –1 otherwise.



In the case of the optimized learning vector quantization
(OLVQ1), the basic LVQ1 algorithm is modified in such a way
that an individual learning rate αi(t) is assigned to each free
parameter input vectors [7]. The basic LVQ1 is optimized in
order to determine αi(t) for fastest possible convergence of the
above equations. It must be warned that αi(t) does not rise above
the value 1.

• Optimized rules for OLVQ1 learning

In order to involve better use of training data, we propose to
proceed OLVQ1 algorithm with the optimal rules given in Figure
2. This approach is supported by the principle consisting in
extracting the maximum amount of information with only a small
sample of task-specific data. This principle is widely used by
recent work in cache-based language modeling [3].

This process consists to split the initial learning database in a
defined number of subsets. A random procedure performs the
distribution of hand-labeled sequences over the subsets. The
number of subsets is chosen in relation with the number and
quality of sequences of the initial learning database. For each
subset, one would select a representative sample of patterns from
each class. The OLVQ1 is consecutively applied over the subsets.
Then, at each step, a temporary codebook is created through the
use of a test database which permits to measure the efficiency of
reference vectors. Only the reference vectors of phonemes
recognized with higher scores are retained and stored in the final
codebook. The phoneme sequences having obtained relatively
bad results are mixed with remaining learning sequences
belonging to the next subset. In this way, another attempt to find
more representative codebook is carried out with more training
data.

1. Proceed splitting the training database into N subsets
2. Init  by using K-means the codebook vectors
3. Select one subset Si and put it in a temporal training set
4. If number of subsets not elapsed then

apply OLVQ1 over temporal training set
test ASRS on subset Sj (j≠i)
feed M-best code vectors in the final code book
add remaining elements of Si  to the temporal training set

5. If  number of final codebook vectors reached
then goto 6 else increment i and goto 3

6. test data using optimal codebook, End

Figure 2. Optimized rules for the application of OLVQ1
algorithm to speech data

Learning and test phases are alternated, and Figure 3 shows
results at consecutive stages of training corresponding to the
successive use of subsets. Notice that the recognition accuracy is
first improved significantly until an optimum is reached; after
that, when learning is continued, the accuracy starts to stabilize
slowly. We believe that the ability of the algorithm to generalize
for new data is increased compared to the classical way which
consists to learn in one pass (dash line in Figure 3). Thus, The
main advantage of this approach resides in the fact that learning
process is tuned towards complex phonemes which are generally
the root of ASR performances drop. It is worthy of note that the

use of more cluster units improves performance. In the presented
case where 10 subsets are used, a difference of 5% over
approximately 6000 phonemes is observed in favor of the
learning using optimized rules.

• Selection of M-best reference vectors

The selection criterion of reference vectors to put into the
temporal codebook depends on the recognition rate and on the
medians of the shortest distances between codebook vectors in
each class. Empirical thresholds related to these two parameters
are determined. These thresholds permit us to perform a pruning
procedure in order to select the best reference vectors. Each class
whose the codebook vectors have obtained a recognition rate
which overpasses a given empirical threshold (95%-98%) and
having its global distance under the average median is retained
for the composition of the final codebook. The size of the final
codebook is about 200.
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Figure 3.The subset number effect over OLVQ1 recognition rate

• Overlearning and stopping rule

The classical problem of ‘overlearning’ i.e., when The codebook
vectors become very specifically tuned to the training data, is
avoided by stopping the learning process after some ‘optimal’
number of steps. Such a stopping rule can only be found by
experience, and it also depends on the input data. Let us recall
here that Kohonen [7] proposes that OLVQ1 may generally be
stopped after a number of steps that is of 50 times the number of
codebook vectors.

4. HYBRID LVQ/TDNN SYSTEM

Mc Dermott and Katagiri [5] performed an interesting
comparison between Waibel’s TDNN and Kohonen’s LVQ
algorithm using the same database and similar conditions. The
LVQ system achieves roughly the same error rate as the TDNN,
but LVQ was much faster during training, slower during testing
and requires more memory than the TDNN.

In hybrid system that we present, illustrated in Figure 4, a
combination of the two algorithms is proposed. This combination
is justified by the fact that designers of systems dedicated to the
Arabic language are unanimously observing that the well known
ASR systems have not the ability to deal with emphasis,
gemination and relevant vowel lengthening [4][11]. Hence, The
drawback of traditional classifiers applied individually, leads us



to develop such a hybrid system, more adapted to the Arabic
language particularities. The OLVQ1 algorithm applying optimal
rules is used but we it will be noted LVQ for simplicity
considerations.

4.1. Description of the Hybrid System

Training the LVQ/AR-TDNN on an utterance proceeds in two
steps. The first step performs optimal alignment between the
acoustic models of phones and the speech signal. In the second
step the AR-TDNN system acts as post-processor to OLVQ1 and
refines its recognition results. The global task is then divided
between the main system constituted by OLVQ1 and the
“booster” system composed of AR-TDNN. We require OLVQ1
to achieve phone identification without discriminating between
long and short vowels and between emphatic and non emphatic
consonants. The gemination detection is also not required. The
hand-labeled data set presented to OLVQ1 presents a single label
for phonemes belonging to these macro-classes. For instance, in
the case of /a/ short vowel and /a:/ long vowel, a unique /A/ label
is given. The /A/ sequence of phones is presented to the AR-
TDNN system which makes final and finer decision related to the
long/short vowel discrimination.

Figure 4. LVQ/TDNN hybrid structure for Arabic speech
recognition.

Because of the importance of the phonetic context for performing
phoneme identification, a careful analysis must be done for
selecting the learning set. The supervision of this learning
considers phones as entire items. The co-articulation effect makes
this supervision difficult. The adopted solution consists in
executing the learning phase such as if a phone of the target-
phoneme appears in the speech continuum, the AR-TDNN
activation arises gradually in the output. In the example of
geminated consonants detection/classification, the task consists in
learning to recognize the following sequence: LCG-GEM-RCG:
LCG is the left phonetic context of the geminated consonant
(noted GEM) and RCG is its right phonetic context.

GEMI_NET (gemination expert network) receives three input
token at a time t and it must detect a geminated sequence from

any other sequence combination. The learning proceeds in the
setting at the high level (+1) the output when the end of the LCG-
GEM-RCG sequence is attained. Low level (-1) is set otherwise
i.e. if a scrolling (stream) of non-geminated phone sequences is
observed. An autoregressive order of 2 is chosen and a delay of 2
phones is also fixed. These lower values of delay and order are
justified by the fact that phones are used instead frames.
Consequently the stability of AR nodes is ensured. Besides of
GEMI-NET system, two other AR-TDNN-based expert systems
are provided: DURA_NET and EMPHA_NET. They respectively
perform long/short vowel discrimination and Emphatic/Non-
Emphatic opposition detection. These tasks are accomplished
according to the same protocol conducted by GEMI_NET.

4.2. Acoustic Attributes and Segmentation Strategy

As it is shown in Figure 4, two auditory models are used: Caelen
ear model [2] for homogenous phone segmentation and PLP
(perceptual linear predictive) [6] technique as acoustical analyzer
for AR-TDNN. The choice of auditory models is justified by the
robustness they involved to ASR systems [3].

Cues derived from hearing phenomena studies are extracted
thanks to the Caelen ear-model [2]. In this model, the internal ear
is represented by a coupled filter bank where each filter is
centered on a specific frequency. The filters number can be
limited to 24 covering a 16Hz-12000Hz frequency range. The 24-
channel spectrum obtained in the output of the 24 coupled filters
can be used directly as input data.

Furthermore, from a particular linear combination of the outputs
of these channels, 7 cues are derived: acute/grave (AG),
open/close (OC), diffuse/compact (DC), sharp/flat (SF),
mat/strident (MS), continuous/discontinuous (CD) and tense/lax
(TL). We showed in [10] that these indicative features are very
relevant to characterize the Arabic phonemes. According to the
procedure described in Figure 5, a delta coding of the acoustic
indicative features is done in order to find out their variation. A
function which is the sum of absolute outputs of delta coders is
evaluated. It quantifies in such a way the discontinuity between
two successive frames. If this amount is over a threshold, which
is variable in time, a mark is attached to the current frames. The
frames between two successive marks make an homogeneous
phone. For each phone, the log-energy of the 24 channels outputs
are used as parameters by OLVQ1 system.

Figure 5. The principle of phone segmentation

∆ coding procedure
R=0 and Delta empiric value
Xn: indicative feature
Zn :encoded indicative feature
n: frame sample

For all frames Do
  Zn=Xn-R/Delta
    If (Xn-1-Xn-2)*(X n-1 Xn)≥0 then
R=Xn-1

    If (Zn<> 0) then R=Xn
EndDo
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Over each phone, an average of PLP coefficients is calculated
and used as input to the AR-TDNN experts. This type of
acoustical parameters have been retained because it gives the best
cross-validation results as it is shown in [10]. This preference is
also justified by a gain in the learning time because of the fact
that the PLP analysis does not require a great number of vector
components.

5. EXPERIMENTAL RESULTS

We compare hybrid system performances to a baseline LVQ-
based system. The results obtained by the two systems are
presented in Figure 6. These results concern 60 VCV utterances
and 50 phrases. This corpus has been pronounced by six Algerian
native speakers (3 men and 3 women). As a whole, the test
concerns 3724 vowels (1348 long), 1197 fricatives (182
geminated, 193 emphatics), 1089 plosives (215 geminated, 273
emphatics), 573 nasals and 413 liquids. The semi-vowels are
assimilated to their corresponding vowels.

The analysis of the results revealed that hybrid configuration is
more accurate in all cases of complex phonemes. We found that
this system achieved 87% accuracy, which represents 8% fewer
errors than the OLVQ1 baseline system which obtained 79%
mean correct rate. Concerning the standard OLVQ1, we noticed
that even if it was relatively effective to detect short vowels, it
failed dramatically in the detection of long vowels. An unbalance
of performances which can reach 20% for the case of /a:/ vowel is
observed. The same phenomenon is observed in the emphasis
detection case where the difference for the /s/ consonant is about
15 % in favor of hybrid system. The redundancy of this trend
leads us to conclude, as it was expected, that standard OLVQ1 is
not capable to perceive relevant phoneme duration changes and
emphasis feature. In contrast, the hybrid system achieved
successfully this task.
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Figure 6. Results of LVQ-based baseline system and LVQ/AR-
TDNN hybrid system for long and short vowels, emphatic and
geminated consonants.

Either monolithic or hybrid architectures realize mediocre scores
in the particularly case of plosives. The omission percentage is
the highest for the case of glottal and pharyngeal consonant (/h/,
/ ! /, /q/, /γ/, /ε/, /?/). It is certainly due to their shortness and their
sensibility to the utterance speed. The co-articulation effects
make them merged into the vocalic context. We have noticed the
failing of the two systems in the identification of the emphatic
feature for the /d/ consonant. The explanation does not reside in
the difficulty inherent to this consonant acoustical proprieties, but
rather in the capability of the speaker to pronounce it correctly. In
fact, in a VCV context, it is very difficult to keep the emphatic
character of /d/ and more often, it is its opposite by this feature
(/d/) which is achieved. This defect is mainly due to the

characteristic of the Algiers regional accent. In the case of the /δ/
and /δ/, We must notice that although these two consonants are
considered as fricatives, in the case where they are geminated,
they are detected as plosives. We have also remarked that when a
conjunction of gemination and emphasis is realized, the hybrid
system totally succeeds to make feature discrimination while the
standard  system fails in all cases.

6. SUMMARY

A completely connectionist hybrid approach for Arabic speech
recognition is presented. Our objective was to test on Arabic
language, the ability of a system combining original versions of
Linear Vector Quantization algorithm and Time Delay Neural
Networks to detect features as subtle as gemination, emphasis and
relevant lengthening of vowels. This hybrid system has been
confronted to a baseline LVQ-based system. Regarding obtained
results, it seems clear that the proposed approach improves
significantly performances in all cases and its generalization can
easily be considered to the all known ASR systems. The split of
the global speech recognition task into subtasks assigned to more
adapted systems i.e. a specific task assigned to a specific system,
constitutes from our point of view a powerful and promising way
to radically solve problems encountered by the automatic speech
recognition systems dedicated to Arabic.
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