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ABSTRACT

Predictions by Kriging and radial basis function (RBF) net-
works with gaussian Kernels are compared. Kriging is a
semi–parametric approach that does not rely on any specific
model structure, which makes it much more flexible than
approaches based on parametric behavioural models. On
the other hand, accurate predictions are obtained for short
training sequences, which is not the case for nonparamet-
ric prediction methods based on neural networks. Examples
are presented to illustrate the effectiveness of the method.

1. INTRODUCTION

We consider the situation where the relationship beetween
the input and output sequencesfxkg andfykg of a SISO
systemS is dominated by nonlinear characteristics. When
using a parametric nonlinear model, first one has to choose
a suitable model structure [1]. Second, once a structure
has been chosen, one has to estimate its parameters. Tra-
ditional parametric representations for nonlinear unknown
structures are the Volterra, Wiener or NARMAX (Nonlin-
ear AutoRegressive Moving Average model with eXoge-
nous inputs) models. They generally involve a very large
number of unknown parameters [2, 3], so that one has to
collect a large amount of data (training sequence) to be able
to estimate these parameters.

Linear prediction by Kriging can be considered as a gen-
eral statistical tool for modeling spatial observations, with
or without observation errors [4, 5, 6]. Kriging is based on a
semi–parametric model which allows much more flexibility
than parametric models, since no specific model structure is
used : the model contains a linear regression part (paramet-
ric) and a non–parametric part considered as the realization
of a random process. Assuming that the process is Gaussian,
the parameters of its covariance matrix can be estimated by
maximum likelihood. It happens that the choice of the linear

regression has little influence on the predictive properties of
the model see, e.g., [7]. The memory lengthmx of the in-
put thus corresponds to the only important prior choice con-
cerning the unknown structure, and a prior over–estimation
of mx only results in heavier computations.

An alternative approach to parametric, or semi–parametric,
models is to use a nonparametric model. Nonparametric ap-
proaches based on neural networs, for instance Radial Ba-
sis Function (RBF) networks, are becoming more and more
popular. A reason is that, in principle, neural networks can
approximate any continuous behaviour with arbitrary preci-
sion [8]. However, besides the problem of having to choose
the structure of the network, remains the major issue of
choosing a suitable (and long enough) training sequence [9].

If the linear part of the Kriging model is reduced to a
constant term, Kriging corresponds to a RBF network with
gaussian kernels, with the centers of the kernels correspond-
ing to the inputs in the training data set, see section 3.2.

2. PREDICTION BY KRIGING

Let fxkg andfykg be the input and output sequences of a
systemS, which are observed fork = 1; : : : ; n. Prediction
by Kriging consists in interpolating these data by construct-
ing the best linear unbiased predictor at new unsampled val-
ues ofx, that isxn+1;xn+2; : : :

2.1. Prediction

When there are no observation errors, the observationsyk
are modelled by

yk = fT (xk)� + z(xk) ;

wherexk denotes the vector formed by lagged scalar inputs

xk = (xk ; xk�1; : : : ; xk�mx+1)
T ;



f(xk) is the linear regressor with� 2 IRp the vector of un-
known parameters, andz(xk) is a realization of a stochas-
tic process. Whenf(x) = 1, which is often suitable, the
method is usually calledsimple Kriging[10]. We shall see
in section 4 that the choice of the regressor is not crucial.

The processz(�) is assumed to have zero mean and co-
variance defined by

Efz(x)z(x0)g = W (x;x0) :

We assume spatial stationarity, that is

W (x;x0) = V (x� x0) = �2zR(x� x0) ;

with R(x) = R(�x). A typical choice is

R(x� x0) = exp

 
mxX
i=1

��ijxi � x0ij
i

!
: (1)

The functionR(:) is continous at0, which corresponds to a
process continuous in the mean–square sense. The choice of
the functional form of the covariance is important, since it
influences the predictive ability of the method. The form (1)
allows enough flexibility through the parameters�i andi,
which correspond respectively to a correlation and smooth-
ness parameter (see [11]). Other covariance functions are
considered, e.g., in [12]. Letyn denote the vector of obser-
vations in the training sample,

yn = (y1; : : : ; yn)
T ;

and defineFn as

Fn =

0
B@

fT (x1)
...

fT (xn)

1
CA :

We predicty(x) at a given value ofx by ŷ(x) = cT (x)yn.
One can show [12] that minimizing the mean–square error
of this linear predictor under the unbiasedness condition

fT (x) = cT (x)Fn ;

one gets

ŷ(x) = fT (x)�̂ + rT (x)V�1
n (yn � Fn�̂) ; (2)

whereVn = �2zRn is the covariance matrix forzn =
(z(x1); : : : ; z(xn))

T , with

[Rn]ij = R(xi � xj) ; (3)

r(x) = Efz(x)zng, that is[r(x)]i = �2zR(x� xi) ;
and where

�̂ = (FT
nR

�1
n Fn)

�1FT
nR

�1
n yn (4)

is the Least–Squares estimator for�. This predictor is a
perfect interpolator:̂y(xk) = yk, k = 1; : : : ; n. The mean–
square error for the prediction is

�2(x) = �2z � [fT (x) rT (x)]

�
O FT

n

Fn Vn

��1 �
f(x)
r(x)

�
:

It satisfies�2(xk) = 0, k = 1; : : : ; n. Assuming a nor-
mal distribution for the processz(x), confidence intervals
can be constructed for the prediction. For instance, a95%
confidence interval is given by

Probfy(x) 2 [ŷ(x)�1:96�(x); ŷ(x)+1:96�(x)]g ' 0:95 :

When observation errors are present, the observations
are modelled as

yk = fT (xk)� + z(xk) + �k ;

with f�kg an i.i.d. sequence of errors with zero mean and
variance�2� and z(�) a stochastic process independent of
f�kg. DefineVn = �2� In+�

2
zRn, with In then-dimensional

identity matrix andRn given by (3). The prediction atx is
then still given by (2). When�2� 6= 0, this predictor is not a
perfect interpolator.

We assume in the rest of this paper that observation er-
rors are negligible.

2.2. Estimation

The prediction̂y(x) depends on the parameters�i andi in
the covariance function (1). The casei = 1, i = 1; : : : ;mx,
corresponds to the product of Ornstein–Uhlenbeck processes,
which are continuous but not differentiable everywhere. When
i = 2, i = 1; : : : ;mx, the process has infinitely differ-
entiable paths (in the mean–square sense). A classical as-
sumption isi 2 [1; 2], i = 1; � � � ;mx. Assuming that
the stochastic processz(�) is Gaussian, one can estimate the
�i’s andi’s by maximum likelihood, together with� and
�2z . Elementary calculations give:

f�̂; ̂g = arg min
f�2IR+mx ; 2[1;2]mxg

[n ln(�̂2z) + ln det(Rn)] ;

(5)

where�̂2z = 1
n
(yn �Fn�̂)

TR�1
n (yn �Fn�̂) ; and�̂ given

by (4) respectively correspond to the maximum likelihood
estimators of�2z and�.

Numerical optimization methods are required for the so-
lution of (5). The problem is sometimes difficult (see e.g.
[13]), but numerical simulations show that a precise deter-
mination of the estimates is not necessary to get an accurate
prediction. In particular, local optima are generally accept-
able. It is recommended in practice to impose constraints
on �, such as�i � � > 0 to preserve the positive–definite
character ofRn during the optimization. Freezing thei’s
at 2 is often acceptable.



3. RADIAL BASIS FUNCTION NETWORK

3.1. Structure of RBF network

A radial basis function network consists of an input layer of
source nodes, a single hidden layer of nonlinear processing
units, and an output layer of linear weights, as depicted in
Fig. 1.
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Figure 1: RBF network

Using the terminology of this figure, we may describe
the input–output mapping performed by the RBF network
as follows:

y(x) = w0 +

nX
i=1

wi'i(x; ti) ; (6)

where the term'i(x; ti) is theith radial basis function that
computes the distance between the input vectorx and the
centerti. Gaussian kernels are the most commonly used in
pratice. When the centersti correspond to the inputsxi in
the training data set,i = 1; : : : ; n, one gets

y(x) = w0 +

nX
i=1

wi exp(�
1

�2i
jjx� xijj

2) (7)

where�i is the width of theith radial basis function [14],
and is fixed by the user. The parameterswi can be estimated
by least squares.

3.2. Relation between RBF and Kriging

If the linear part of the Kriging model is reduced to a con-
stant termf(:) = 1,

Fn = 1 =

0
B@

1
...
1

1
CA :

�̂ =
1
T
V
�1
n

1TV
�1
n 1

yn, see (4), and the equation (2) can be rewrit-
ten as

ŷ(x) = �̂ + rT (x)(In �
V�1

n 11T

1TV�1
n 1

)V�1
n yn

that is

ŷ(x) = ŵ0 +

nX
i=1

ŵiR(x� xi) (8)

whereŵ = [ŵ1 : : : ŵn]
T = (In �

V
�1
n
11

T

1TV
�1
n 1

)V�1
n yn, ŵ0 =

�̂ and'(x;xi) = R(x� xi). Prediction by Kriging (8) has
thus the same expression than the prediction by RBF with
gaussian Kernels (7). However, the parameters�2i in (7) are
fixed, whereas the�i’s in (1) are estimated.

The examples of the next section compare the two ap-
proaches. As mentionned in [15], such a comparison be-
tween different approaches is important but intrinsically dif-
ficult. We consider, in particular, the influence of the train-
ing sequence on the quality of the prediction. For short
training sequences Kriging shows better performance than
RBF.

4. EXAMPLES

The examples presented correspond to simulated data. No
measurement errors are added to the observations.

EXAMPLE 1. The intput–output relationship of the system
is presented in Fig. 2 and given by

yk = sinc(
q
ax21k + bx22k ) ;

with a = 4, b = 2.
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Figure 2: Nonlinear system

EXAMPLE 2. The observations are given by

yk = sinc(
q
ax21k)G(x2k)

see Fig. 3, whereG(:) is a nonlinear static function which
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Figure 3: Nonlinear system

corresponds to a saturation, see Fig. 4,

G(x) =
2

1 + exp(��x)
� 1 : (9)

We takea = 4, � = 7.
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Figure 4: Sigmoid function

We consider a training sequencefxk = (x1k = xk; x2k =
xk�1); ykg of lengthn, 15 � n � 50, with fxkg i.i.d. uni-
formly in [�1; 1].
The prediction is made over an horizon of 1000, that is for
yn+1; : : : ; yn+1000. The same training sequence is used for
the two approaches, Kriging and RBF.

For prediction by Kriging, the regressorf(:) is reduced
to a constant termf(x) = 1. The correlation matrix is given
by (1) with1 = 2 = 2.

For prediction by RBF, the widths�i of the gaussian
kernels are fixed to 1,i = 1; : : : ; n. The parameterswi are

estimated by least squares.

The results obtained with the two approaches are sum-
marized in Table 1 and 2, which give the mean (< : >)
and the standard deviation (std(.)) of the normalized mean–
square errorEr over 10 independant repetitions:

Er = 10 log
(yNn+1 � ŷNn+1)

T (yNn+1 � ŷNn+1)

(yNn+1)
TyNn+1

; (10)

with yNn+1 the vector of observations(yn+1; : : : ; yN ) and
ŷNn+1 the vector of predictions(ŷn+1; : : : ; ŷN ).

Kriging RBF
n < Er > std(Er) < Er > std(Er)
50 -41.36 3.13 -30.15 4.37
45 -37.58 5.06 -28.20 4.27
40 -31.78 3.71 -24.99 5.31
35 -27.69 2.49 -17.52 4.28
30 -24.92 2.71 -13.57 2.07
25 -20.36 4.60 -11.17 2.48
20 -13.17 4.15 -7.78 3.59
15 -7.06 4.25 -1.65 3.32

Table 1: Example 1

Kriging RBF
n < Er > std(Er) < Er > std(Er)
50 -22.37 6.26 -13.17 3.78
45 -20.24 5.49 -12.12 4.86
40 -20.04 4.09 -10.58 4.73
35 -17.24 4.34 -9.07 2.82
30 -16.39 3.20 -7.99 2.58
25 -14.90 2.74 -7.23 4.76
20 -11.40 3.07 -3.99 3.56
15 -6.93 3.48 -0.85 2.13

Table 2: Example 2

Fig. 5 and 6 givey as a function of̂y, for k = n +
1; : : : ; N , for prediction by Kriging and RBF, for a typical
realization of example 2 withn = 50.

5. CONCLUSIONS

Predictions by Kriging and radial basis functions with gaus-
sian Kernels have been compared. Although the predictors
share the same structure, see (7) and (8), the results are
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Figure 5:y versuŝy for Kriging
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Figure 6:y versuŝy for RBF

much different.

The examples presented show that prediction by Krig-
ing is much more accurate than prediction by RBF. This is
due to the greater flexibility of Kriging, through the param-
eters of the covariance function of the stochastic process.
The price for this increase of performance is the estimation
of these parameters (the�i’s in (1)), which requires the use
of a nonlinear programming algorithm (sequential quadratic
programming is used in the examples of section 4).

The construction of arecursivealgorithm (recursive with
respect tok = 1; : : : ; n in the training sequence) for the so-
lution of the estimation problem (5) will be the subject of
further work.

6. REFERENCES

[1] S.A. Billings and S. Chen. Extented model set, global
data and threshold model identification of severely

nonlinear systems.Int. J. Control, 50(5):1897–1923,
1989.

[2] W. J. Rugh.Nonlinear System Theory : The Volterra
/ Wiener Approach. The Johns Hopkins University
Press, Baltimore, 1981.

[3] S.A. Billings and W. S. Voon. A prediction-error and
stepwise-regression estimation algorithm for nonlin-
ear systems.Int. J. Control, 44(3):803–822, 1986.

[4] D.G. Krige. A statistical approach to some mine valua-
tion and allied problems on the Witwatersrand. Master
Thesis, University of Witwatersrand, 1951.

[5] G. Matheron. Principles of Geostatistics.Economic
Geology, 58:1246–1266, 1963.

[6] N. Cressie. Kriging nonstationary data.J. of the Amer.
Statis. Assoc., 81:625-634, 1986.

[7] W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J.
Mitchell, and M.D. Morris. Screening, predicting and
computer experiments.Technometrics, 34(1):15–25,
1992.

[8] K. Hornik, M. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2:359–366, 1989.

[9] T. Poggio and F. Girosi. Networks for approxima-
tion and learning.Neural Networks Proc. of the IEEE,
78(9):1481–1497, 1990.

[10] N. Cressie.Statistics for Spacial Data.Wiley, 1993.

[11] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn.
Design and analysis of computer experiments.Statis-
tical Science, 4(4):409–435, 1989.

[12] J. Sacks, S.B. Schiller, and W.J. Welch. Designs
for computer experiments.Technometrics, 31:41–47,
1989.

[13] J.J. Warnes and B.D. Ripley. Problems with likelihood
estimation of covariance functions of spatial gaussian
processes.Biometrika, 74(3):640–642, 1987.

[14] S. Haykin. Adaptive Filter Theory. Third Edition,
Prentice Hall, Inc, A Simon & Schuster Company,
New Jersey, 1996.

[15] V. Cherkassky, D. Gehring, and F. Mulier. Compari-
son of adaptive methods for function estimation from
samples.IEEE Trans. on Neural Networks, 7(4):969–
984, 1996.


