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ABSTRACT The subscriptg denotes the number of the corresponding
In this work a new approach for the learning process tfyer :s=1..L. n, is the number of neuron of tis layer.
multilayer perceptron Neural Networks (NN) is proposedlhe SBP is based on the following optimization criterion
This approach minimizes a modified form of the criteriomlefined for thep™ pattern as :

used in the standard back-propagation algorithm (SBP) n 1 2 "1 0\2
formed by the sum of the linear and the nonlinear quadratle = —(q[jL]) = Z —(dg - y‘j ) ) (3)
errors of the neuron. To determine the desired target in the 2 = 2

hidden layers an analog back-propagation strategy used
the conventional learning algorithms is developed. Thi
permits the application of the learning procedure to all thespectively, for th@¢" unit (j=1..n,).
layers. Simulation results on the 4-byte parity checker a8ince the SBP algorithm is treated in the literature [1][2], we
the circle in the square problem are obtained which indicashall only remind here its main equations defined forpthe
significant reduction in the total number of iterations whepattern with the following steps :
compared to those of the SBP algorithm. 1) Initialize randomly  the weight vectors:

1. INTRODUCTION g T )
Speeding the NN training algorithms is coming a recer}f\/j[] :[V\;ji , V\[Iji ""’\A{ri,l] s1.L)=1..n,
subject of research [2][5][6][8][12]. The aim of this work ispy Run a training pattern through the network : equations (1)
to present a new algorithm which is considerably faster thap,q ).
the SBP algorithm. The new algorithm uses a modified for@) Evaluate the error signals :
of the conventional SBP algorithm, it minimizes the sum Qf g, the output layer]:
the linear and the nonlinear squares errors for all outpug; _ d9y el
units and for the current pattern. To find the linear outpd‘?j =f( ] )qj 4)
error we compute the desired output summation by invertingror the hidden layers][: (s=1...L-1)
the output layer nonlinearity [5][12]. This paper is organized Ngry
as follows : in section 2 we shall give a brief review of the!¥ = f (/3 )Z (ésﬂ \}VS+1) (5)
SBP algorithm where in section 3 we present the new : b= :
algorithm and we shall show the modifications done on th(3
SBP algorithm and the effect of introducing the linear errcﬂ
in the updating equations. Following this, in section 4,
experimental results are given showing comparisons between )Jsfl] o Wio
the two algorithms and finally section 5 presents the main 21]
conclusions of the papeAn appendix is given at the end of 311
this work which highlight the different demonstrations of the
new algorithm.

2. REVIEW OF THE SBP ALGORITHM

The SBP is the most used algorithm for training multilayer

ér?u and yEL] are the desired and the actual outputs

Update the new weight vectoWj[S] :

s1]
)In s1

NN formed by interconnections of neurons of type of Fig.1. Fig.1: Implementation of the new MBP
The linear and the nonlinear actual outputs are respectively algorithm for a neuron j
given by : in a layer [s] of the NN.
S| S—.
TSI VSRS Wi (k+0) = W (R+pe’ ¥ ®)
P Z Y ( u is the learning coefficientf ’ is the first derivative of.
= 5) Go to step 2 if the algorithm has not converged.

f (u[_sl) - 1 - y[_sl @ In order to increase the convergence speed of the SBP, we

! -ad? ! shall use a new form of the signal error based on the linear

l+e .
and nonlinear error at the output of the NN.



3. NEW APPROACH Since the desired linear and nonlinear outputs are unknown
3.1. Learning of the single layer perceptron both of their corresponding errors should be estimated.
Let us first develop the new algorithm for a neurdocated Let us first apply the gradient descent methodt tfor the
in any given layerq of the network. We assume that welayer [L-1] and then generalize the results for the other
know the desired nonlinear output of this neuron for thieidden layers :

chosen pattern. Then the desired summation signal is [L-1] OE
directly computed by inverting the nonlinearity activation®Wi = _Uﬂ (14)
function. W,
Note that we haven{;+1) inputs to this neuronj)( The Which leads after some calculation to :
nonlinear and linear errors are equal respectively to: - L L ) ! B

&% = dl¥ - ! A, =y l); M Wo
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L-2 L- [L] L
WhereldJ[S] is the desired summation given by : ﬂMyE d 5 (15)
=1
|d,[S] = f l(d[jsl) (9By analogy to the updatlng equation for the output layer we
Let us define now the new proposed optimization criteEon o (] £ U[L] V\W )
for thejth neuron and for thp™" pattern : can assume that the term) e~ f'(u~)w;" is a
1 2 1=
[s] [d
(elJ ) +§A(gj ) (10)

L-1] (L] Il is
By applylng the gradient descent method tawe shall state : nonlinear error and the ternt:" (u )Z & V\;

AWEiS] =—U dES = e, [ js 14 ) %[S] )}S_l] (11) linear error for this layer.

E.] Define the nonlinear error estimation in the hidden laler [
1] for thei™ neuron by :
wheree is defined by equation (4).

N,
, L 4
Comparatively to the SBP, the new algorithm differ only b}el, ©U = Z q[jL] f'( 4 ]) V({i] (16)

the term pAe,l¥ ¥ .
HAG) >} and the linear error est|mat|on by:
In the appendix it is shown that this algorithm converges

faster than the SBP algorithm for the given nonllneantézlL - (LllL ]J)Z %[Ll [|L1 (17)
activation function and also for a good choice of the

weighting coefficientA .

3.2. The new MBP algorithm for the multilayer NN
The new optimization criterion is given by:

Then the updating equation for thie-J)™ layer takes the
same form of the one obtained for the output layer :

ol = R T ey e

L 1 2
E= Z “] Z —A( g ) (12) (18)
= 2 The procedure of derivation may be continued layer by layer.
we will derive now the updating equations for the output arfdence, for a given layers][ the updating equation (18)

the hidden layers . becomes:

awie =y () g + Ay R g
3.2.1. Learning of the output layer by the MBP h
algorithm where -

In this layer the nonlinear outputs are known then we can[sl _ < [s+] F( L“S+l]) V{,s]

compute their corresponding linear outputs, hence the line (20)
and nonlinear errors are directly evaluated. The appllcanon r=1
of the gradient descent methodBgjives : and )
st1
w _ = (9 _ ¢ )9 [s+] | [s+1]
AWji ="H [ & = f (u[J )Z & W (21)
dei r=1
_ then the learning will be faster than in the SBP algorithm.
— v(yH [L] -1 [L-1]
=t (uj”)e; % + LA ey (13)  In the sequel we summarize the new MBP algorithm.

3.2.2. Learning of the hidden layers by the MBP Step 1 - Initialization:
algorithm



1 iterations as opposed to the SBP algorithm at 460 iterations.

to a values ; ) . .
From this we see that there is an improvement ratio nearly

* From layer s=1 to L, equalize all yés_
different from 0, (0.5 for example).

* Randomize all the weightw[jf] at random values.

* Choose the weighting valug or an initial valuel (0) .
Step 2 - Select training pattern:

4-byte parity checker problem (Threshold=10e-11
Number of CPU Time Total time of

iterations (s)/iteration convergence(s)
BP 460 5.22105 2.401
MBP 150 7.5810° 1.137

Select an Input/ Output pair to be processed into the

Table 1 : Comparison of the CPU Time needed for the
network.

convergence of the MBP/SBP.

. .0 . . .
The input vector isy " and its corresponding output IS of 70 % for the number of iterations. We remark also that we

d[L] reach a CPU time ratio of about 50 % with respect to the
time requested for the SBP.
Step 3: 4.2. Circle in the square problem

Run a selected pattern through the r_1et_work. for each laygr this application the NN have to decide if a point of
[sl, (¢=1,..,L) and for each nodg)(in this layer by ¢oordinate x, y surrounded between -0.5 and +0.5 is in the
calculating: . circle of radius equal to 0.35.

- The summation outputs: equation (1). Table 2 shows that the new algorithm remains below a MSE
- The nonlinear outputs: equation (2). equal to 0.0018 after 135 iterations as opposed to the SBP
Step 4 - Error signals: algorithm at 400 iterations. From this we see that there is

* Calculate for the output layetY and for thep™ pattern: 310 an improvement ratio of about 66 % for the number of
- The desired summations : equation (9).

- The output errors: equation (7).

- The linear output errors: equation (8). Circle in the square problem (Threshold=0.0018)
* For the hidden layerss=1 toL-1 Number of CPU Time Total time of

- Evaluate the nonlinear estimation errors: equation (20). iterations (s)/iteration convergence(s)
-Evaluate the linear estimation errors : equation (21). BP 200 59,6610 11.864
Step 5 -Updating the synaptic coefficients : MBP 135 459710 6.206

For any nodejf of the layers=1 to L modify the synaptic Table 2 : Comparison of the CPU Time needed for the
coefficients : equation (19). convergence of the MBP/SBP.

Step 6 - Test for ending the running:

If the convergence condition is not verified, go back to
Step2.

3.3. Comparison of the computation complexity

Table(3) gives a comparison of the number of the
multiplication operations needed for each algorithm.

Obviously, the proposed algorithm is slightly more complex (8) 2 iterations (b) 30 iterations  (c) 100 iterations
than the SBP, while in the sequel, we will see that it has a MSE-O.19|3:. 5. SBPMSIE_Q#M —0.5): MSE=0.0259
faster convergence behavior than the SBP in number of 9.2 algorithm (1=0.5);

training iterations and in computing time.

4. EXPERIMENTAL RESULTS
The 4-byte parity checker problem (logic problem) and the
circle in the square problem (analog problem) are the
benchmark used in this section.
The parameters of the sigmoidal function, the learning and

the weighting coefficient for the new algorithm are chosen (a?vlzs :;Ei?g%gs () l\l/losge—?t(i)%nsss (© 'aosiée_fgt(iﬁ%%
the same for both algorithms. Moreover we give the range of e = =0.

S . S Fig.3 : MBP algorithm (u=0.5A=0.7);
the _|n|t!al values of the synaptic coefficients. For ,a||t rations and a CPU time ratio of about 50 % with respect to
applications we have used the same NN structure with

hidd tfre time requested for the SBP.
\dden neurons, Yhe output of the network at various iteration numbers is

number vary according to the application : 4 for the 4'byr§hown in Fig. 2 (a, b, c) for the SBP and Fig. 3 (a, b, c) for

parity checker problgm and 2 for the circle in the SAUaiHe MBP. It is seen that the new algorithm forms a circle in
problem. The sigmoidal threshold was hold constant: a=0. 0 iterations whereas the SBP takes more than 100

iterations.
4.1. The 4-byte parity checker problem

Table 1 shows that the new algorithm remains below a
mean-squared error (MSE) equals to 10e-11 after only 150



5. CONCLUSION [12] F.B. Kbnig and F.Barmann, " A learning Algorithm for
multilayered neural networks based on linear squares
In this paper we have proposed a new fast algorithm fproblems "Neural NetworksVol 6, pp 127-131 1993.
training neural networks based on a criterion taking infd3] C. Brezinski « Algorithmes d&xeléation de la
account the linear and nonlinear signal errors. The neamnvergence ; étude numérique » Editions Technip. ISBN 2-
MBP algorithm converges on fewer iterations whe108-0341-0
compared to the SBP algorithm for a suitable choice of the APPENDIX
learning parameters. The optimal range values of the
parameterA is given in the appendix. Since this rangés mentioned in 3.1. we assume that we know the desired
become small during the learning procedure a decreasingnlinear output of this neuron for the chosen pattern. Then
type exponential of the weighted term is required. the desired summation can be directly computed by
inverting the nonlinearity.
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Theorem 2: :| oW = B oS

If {t;} and {h;} are two series of ranks andp respectively i F, (V\}' )= F (V\%' ) (29)
and ifr>p then {;} converges faster thamh{}. In the case b-Determination of the rank "r ;" of H;:

of r=p and the asymptotic constant erroy is less than Using equation (25) we find easly that :

sl sl [4]
Chﬂ then the seriest{} converges faster tharh}. d_'i(\NEi ) — i(\N][i . [s—l] dU
a- Determination of the rank "r ;" of F;: 5\/\/5.31 5\/\/5.31 dﬂlﬁfl
For this matter, let us compute the first derivativé-ofith [S] v\}g
respect tol H (w}) )~ m(yt) 30)
C 1:
d: (W][|S]) _ [s-1] e [s] s-1 2 s
s =1l+py; " “If F (W )= u)\(yi[ ) i.e. H', (WEi ) =0 then the
Ji
yE R (27) rank of this series become greater or equal to rie 2.
R Q%G ( ) [81 - f (UISI ﬂy We obtain a convergence speed at least double of the one
[31 [31 obtained by the SBP.
H W, oW, Case 2: ’
After some calculation we obtain : _a\2
(9 f B (wil) # Ay ) e HY (W) £ 0 then
O”F(W ) i i ji
[3 1 f (L}S] ) . . .
O.W[s] Yi j (28) r,= 1. To make the serigd; converges faster tha it
. - oy add e
[f (u[s]) (1- 2f(dq ))el[S] will be enough thatC, <G, ie. |Hi (ng )|<|Fi (v\}ji )|.
1 [l
Case 1: ¥ ; » (o1 This always holds when0< A < '—“2 for this
S| _ _
. i [f (U%)-@-2f(*))e ] 0o YU =0 u(yI[Sl])

then F, (WEi]) =1.Thenr;=1

Case 2: .
seriesH; converges faster thdh .

<ot [FrU®)-@-2f(d?)e¥]# 0 anay@ %0 ' |
If[ (u;™) = ( (U’))e; ]¢ andy;” ~ # i (yllsll) =0 then HW)=F W) then

then taking into account that :
_1\2 c = . In this case the two series have a similar
o<f(u[f])<1,o<f'(u531)<1ando<(y}“1) <1 & T

condition we have assumed th tyi[s_l]) #0. Then the

_ convergence behavior, but it must be noted that this case can
we obtain : be occur only in the input layer for null components vectors
1< ( [s- 1]) fr (UIS in the learning input pattern. For the hidden and output

_ 2
[f (u[s]) (1-2f (u[q ) 91[31 layers we have aIwa;(syi[S l]) # 0 and the convergence is
always faster than the SBP.

then F (W[ ]) >0 while In some simulation results, we find out that it is convenient
to chooseA as :
O<pu< ; . 1
[s=9% ¢,/ [9 Alk+1) = wherec is a positive constant.
yf(UY) &+ D=2m
1
e g 1
) - @-2f(U?) el

Table 3 : Complexity evaluation of the MBP/SBP algorithm

then r, = 1. For both cases wg Algorithm = SBP = MBP =

S

have :F (W) >0, then the| Erors | 2n, + Z n(n,+2 |5 + Z N(Ng, +2) + Z n.(ny, +1)

rank of this series is equal to 1. s=1 s=1 s=1

The asymptotic constant errqr _ L L L

of F; is then equal to : Updating Z Ny(Ng, +2) Z Ng(Ng, +2)+ Z Ny(Ng, +2)
s=1 s=1 s=1




