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ABSTRACT
In this work a new approach for the learning process of
multilayer perceptron Neural Networks (NN) is proposed.
This approach minimizes a modified form of the criterion
used in the standard back-propagation algorithm (SBP)
formed by the sum of the linear and the nonlinear quadratic
errors of the neuron. To determine the desired target in the
hidden layers an analog back-propagation strategy used in
the conventional learning algorithms is developed. This
permits the application of the learning procedure to all the
layers. Simulation results on the 4-byte parity checker and
the circle in the square problem are obtained which indicate
significant reduction in the total number of iterations when
compared to those of the SBP algorithm.

1. INTRODUCTION
Speeding the NN training algorithms is coming a recent
subject of research [2][5][6][8][12]. The aim of this work is
to present a new algorithm which is considerably faster than
the SBP algorithm. The new algorithm uses a modified form
of the conventional SBP algorithm, it minimizes the sum of
the linear and the nonlinear squares errors for all output
units and for the current pattern. To find the linear output
error we compute the desired output summation by inverting
the output layer nonlinearity [5][12]. This paper is organized
as follows : in section 2 we shall give a brief review of the
SBP algorithm where in section 3 we present  the new
algorithm and we shall show the modifications done on the
SBP algorithm and the effect of introducing the linear error
in the updating equations. Following this, in section 4,
experimental results are given showing comparisons between
the two algorithms and finally section 5 presents the main
conclusions of the paper. An appendix is given at the end of
this work which highlight the different demonstrations of the
new algorithm.

2. REVIEW OF THE SBP ALGORITHM

The SBP is the most used algorithm for training multilayer
NN formed by interconnections of neurons of type of Fig.1.
The linear and the nonlinear actual outputs are  respectively
given by :
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The subscript [s] denotes the number of the corresponding
layer : s=1...L. ns  is the number of neuron of the sth layer.
The SBP is based on the following optimization criterion
defined for the pth pattern as :
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d j

L[ ]
 and y j

L[ ]
 are the desired and the actual outputs

respectively, for the j th unit ( j=1...nL ).
Since the SBP algorithm is treated in the literature [1][2], we
shall only remind here its main equations defined for the pth

pattern with the following steps :
1) Initialize randomly the weight vectors:
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2) Run a training pattern through the network : equations (1)
and (2).
3) Evaluate  the  error signals :
- For the output layer [L]:
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- For the hidden layers [s] : (s=1... L-1)
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4) Update  the  new  weight  vectors  Wj

s[ ]
 :
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µ  is the learning coefficient,  f ’ is the first derivative of f.
5) Go to step 2 if the algorithm has not converged.
In order to increase the convergence speed  of the SBP, we
shall use a new form of the signal error based on the linear
and nonlinear error at the output of the NN.

f

wj0

j1w

w

0

1 y
uj

j

y

y

ns-1
y

[s]
[s]

[s]

[s]

[s]

[s-1]

[s-1]

[s-1] jns-1 f -1

dj

Adaptive
algorithm

Fig.1: Implementation of the new MBP
algorithm for a neuron  j
in a layer [s] of the NN.



3. NEW  APPROACH
3.1. Learning of the single layer perceptron
Let us first develop the new algorithm for a neuron j located
in any given layer [s] of the network. We assume that we
know the desired nonlinear output of this neuron for the
chosen pattern. Then the desired summation signal is
directly computed by inverting the nonlinearity activation
function.
Note that we have (ns-1+1) inputs to this neuron (j). The
nonlinear and linear errors are equal respectively to:
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Where ld j

s[ ]
 is the desired summation given by :
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Let us define now the new proposed optimization criterion E
for the  j th  neuron and for the pth pattern :
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By applying the gradient descent method to E we shall state :
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where ej

s[ ]
 is defined by equation (4).

Comparatively to the SBP, the new algorithm differ only by

the term µλe yj
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In the appendix it is shown that this algorithm converges
faster than the SBP algorithm for the given nonlinearity
activation function and also for a good choice of the
weighting coefficient λ .
3.2. The new MBP algorithm for the multilayer NN
The new optimization criterion is given by:
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we will derive now the updating equations for the output and
the hidden layers .

3.2.1.  Learning of the output layer by the MBP
algorithm
In this layer the nonlinear outputs are known then we can
compute their corresponding linear outputs, hence the linear
and nonlinear errors are directly evaluated. The application
of the gradient descent method to E gives :
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3.2.2. Learning of the hidden layers by the MBP
algorithm

Since the desired linear and nonlinear outputs are unknown
both of their corresponding errors should be estimated.
Let us first apply the gradient descent method to E for the
layer [L-1] and then generalize the results for the other
hidden layers :
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Which leads after some calculation to :
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By analogy to the updating equation for the output layer we

can assume that the term: e f u wj
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linear error for this layer.
Define the nonlinear error estimation in the hidden layer [L-
1] for the i th neuron  by :
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and the linear error estimation by:
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Then the updating equation for the [L-1] th layer takes the
same form of the one obtained for the output layer :
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The procedure of derivation may be continued layer by layer.
Hence, for a given layer [s] the updating equation (18)
becomes:
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where :
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and :
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then the learning will be faster than in the SBP algorithm.
In the sequel we summarize the new MBP algorithm.
Step 1 - Initialization:



* From layer s=1 to L, equalize all y
s

0
1[ ]−

 to a values

different from 0, (0.5 for example).

* Randomize all the weights wji

s[ ]
 at random values.

* Choose the weighting value λ  or an initial valueλ( )0 .

Step 2 - Select training pattern:
Select an Input/ Output pair to be processed into the
network.

The input vector is y
[ ]0

 and its corresponding output is

d
L[ ]

Step 3 :
Run a selected pattern through the network for each layer
[s], (s = 1 ,..., L)  and for each node (j) in this layer by
calculating:
- The summation outputs: equation (1).
- The nonlinear outputs: equation (2).
Step 4 - Error signals:
* Calculate for the output layer (L) and for the pth  pattern:
- The desired summations : equation (9).
- The output errors: equation (7).
- The linear output errors: equation (8).
* For the hidden layers : s =1 to L-1
- Evaluate the nonlinear estimation errors: equation (20).
-Evaluate the linear estimation errors : equation (21).
Step 5 -Updating the synaptic coefficients :
For any node (j) of the layer s=1 to L modify the synaptic
coefficients : equation (19).
Step 6 - Test for ending the running:
If the convergence condition is not verified, go back to
Step2.
3.3. Comparison of the computation complexity
Table(3) gives a comparison of the number of the
multiplication operations needed for each algorithm.
Obviously, the proposed algorithm is slightly more complex
than the SBP, while in the sequel, we will see that  it has a
faster convergence behavior than the SBP in number of
training iterations and in computing time.

4. EXPERIMENTAL RESULTS
The 4-byte parity checker problem (logic problem) and the
circle in the square problem (analog problem) are the
benchmark used in this section.
The parameters of the sigmoidal function, the learning and
the weighting coefficient for the new algorithm are chosen
the same for both algorithms. Moreover we give the range of
the initial values of the synaptic coefficients. For all
applications we have used the same NN structure with 8
hidden neurons, one output neuron. The input neuron
number vary according to the application : 4 for the 4-byte
parity checker problem and 2 for the circle in the square
problem.  The sigmoidal threshold was hold constant: a=0.8.

4.1. The 4-byte parity checker problem
Table 1 shows that the new algorithm remains below a
mean-squared error (MSE) equals to 10e-11 after only 150

iterations as opposed to the SBP algorithm at 460 iterations.
From this we see that there is an improvement ratio  nearly

of 70 % for the number of iterations. We remark also that we
reach a CPU time ratio of about 50 % with respect to the
time requested for the SBP.
4.2. Circle in the square problem
In this application the NN have to decide if a point of
coordinate x, y surrounded between -0.5 and +0.5 is in the
circle of radius equal to 0.35.
Table 2 shows that the new algorithm remains below a MSE
equal to 0.0018 after 135 iterations as opposed to the SBP
algorithm at 400 iterations. From this we see  that there is
also an improvement ratio of about 66 % for the number of

iterations and a CPU time ratio of about 50 % with respect to
the time requested for the SBP.
The output of the network at various iteration numbers is
shown in Fig. 2 (a, b, c) for the SBP and Fig. 3 (a, b, c) for
the MBP. It is seen that the new algorithm forms a circle in
30 iterations whereas the SBP takes more than 100
iterations.

4-byte parity checker problem (Threshold=10e-11)
Number of
iterations

CPU Time
 (s)/iteration

Total time  of
convergence(s)

BP 460 5.2210-3 2.401
MBP 150 7.5810-3 1.137

Table 1 : Comparison of the CPU Time needed for the
convergence of the MBP/SBP.

(a) 2 iterations         (b) 30 iterations      (c) 100 iterations
   MSE=0.193               MSE=0.114              MSE=0.0259

Fig.2 : SBP algorithm (µ=0.5);

Circle in the square problem (Threshold=0.0018)
Number of
iterations

CPU Time
 (s)/iteration

Total time of
convergence(s)

BP 400 29.6610-3 11.864
MBP 135 45.9710-3 6.206

 Table 2 : Comparison of the CPU Time needed for the
convergence of the MBP/SBP.

(a) 2 iterations         (b) 10 iterations       (c) 30 iterations
   MSE=0.229               MSE=0.0358           MSE=0.0156

Fig.3 : MBP algorithm (µ=0.5;λ=0.7);



5. CONCLUSION

In this paper we have proposed a new fast algorithm for
training neural networks based on a criterion taking into
account the linear and nonlinear signal errors. The new
MBP algorithm converges on fewer iterations when
compared to the SBP algorithm for a suitable choice of the
learning parameters. The optimal range values of the
parameter λ is given in the appendix. Since this range
become small during the learning procedure a decreasing
type exponential of the weighted term is required.
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APPENDIX

As mentioned in 3.1. we assume that we know the desired
nonlinear output of this neuron for the chosen pattern. Then
the desired summation can be directly computed  by
inverting the nonlinearity.

By deriving E given by  (10) with respect to wji
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For the SBP algorithm : λ=0
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For the new algorithm (λ > 0) then :
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Note that we have :
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Now, assume that the functions Fi and Hi   have the same
fixed point over a certain range in the real set ℜ . Hence,
the recursions (23) and (24) may be viewed as two series
functions of values {tji= Fi(wji )} and {hji= Hi(wji )} which
may converge to this point.
In order to compare the speed of convergence of both Fi  and
Hi which in other words corresponds to the comparison of
the new proposed modified algorithm and the SBP
algorithm, we shall compare their corresponding rank and
also their asymptotic constant errors. First let us state these
following theorems [13].
Theorem 1:
Assume that a series {xk} is generated by xk+1=F(xk). If this
series converges to (x) and if F is differentiable in the
neighborhood of (x) then the rank of the series {xk} is the
smallest integer number r verifying:
F’ (x)=...=F(r-1)(x)=0  and F(r)(x)≠0

We have also : lim
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Theorem 2:
If { tji } and {hji } are two series of ranks r and p respectively
and if r>p then {tji } converges faster than {hji }. In the case
of  r= p and the asymptotic constant error ct ji

is less than

chji
then the series {tji } converges faster than {hji }.

a- Determination of the rank "r 1" of Fi :
For this matter, let us compute the first derivative of Fi  with

respect to wji
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After some calculation we obtain :
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Case 1 :
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have :F wi ji
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rank of this series is equal to 1.
The asymptotic constant error
of Fi  is then equal to :
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b-Determination of the rank "r 2" of Hi:
Using equation (25) we find easly that :
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Case 1:

* If ( )F w yi ji
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rank of this series become greater or equal to 2 i.e. r2 ≥ 2 .

We obtain a convergence speed at least double of  the one
obtained by the SBP.
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convergence behavior, but it must be noted that this case can
be occur only in the input layer for null components vectors
in the learning input pattern. For the hidden and output

layers we have always ( )yi

s[ ]− ≠1 2

0 and the convergence is

always faster than the SBP.
In some simulation results, we find out that it is convenient
to choose λ as :

λ
λ

( )
( )

k
c k

+ =1
1

 where c is a positive constant.

Table 3 : Complexity evaluation of the MBP/SBP algorithm
Algorithm SBP MBP

Errors 2 21
1
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−
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1

1

1

Updating n ns s

s

L
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1

2 n ns s

s

L

( )−
=
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L
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