
121/,1($5�,0$*(�352&(66,1*�7+528*+
6(48(1&(6�2)�)$67�&(//8/$5�1(85$/

1(7:25.6��)&11�

0��&ROL����3�3DOD]]DUL����5�5XJKL��

1 Electronic Engineering Department, University ‘La Sapienza’, Via Eudossiana, 18 - 00184 Rome (Italy)
E-mail coli@die.ing.uniroma1.it, rodolfo.rughi@infoservice.it

2 ENEA – HPCN Project – C.R. Casaccia, Via Anguillarese, 301, S.P. 100
00060 S. Maria di Galeria (Rome) – E-mail palazzari@casaccia.enea.it

$%675$&7
Cellular Neural Networks (CNN) are a powerful paradigm to
perform fast nonlinear image processing. They are not
widely used because 1) they must be implemented on
analogic HW 2) they are not easily programmable and 3) they
do not have a fast and robust learning algorithm. In this paper
we introduce a new class of CNN, the Fast CNN (FCNN),
which can be efficiently implemented on digital HW, are
easily programmable and have fast and robust learning
algorithms. We give a theoretical description of FCNN and
we introduce a fast learning algorithm, based on Simulated
Annealing. An image elaboration tool, based on the Learning
(LM) and Elaboration (EM) Modules is described. Through
an example (texture recognition) we show how FCNN can be
used to efficiently implement nonlinear image processing.

��� ,1752'8&7,21

Cellular Neural Networks (CNN) [1],[2] were introduced by
L.O. Chua and are a powerful computational paradigm to
perform not linear image processing. The universal CNN
machine [3] was developed as an analogic programmable
environment performing fast processing: computational time
is the time elapsed from initial state to the transient
completion. An image is transformed through a CNN
programmed by a sequence of cloning templates, being
cloning template the set of weights connecting neurons and
determining the elaboration. CNN universal machine offers
an high throughput, due to the high speed of analogic
devices, but presents many severe drawbacks which make it
inadequate for a widespread diffusion and use. In fact, CNN
universal machine is based on a not standard analogic HW;
furthermore, like CNNs, it suffers of the lack of fast and
reliable learning algorithms.

In order to exploit CNN flexibility without occurring in the
above mentioned problems, we developed the Fast CNNs
(FCNNs). FCNNs are characterized by

1. toroidal topology

2. discrete time evolution

3. the using of the few steps of the dynamic sufficient to
perform the desired transformation (typically 1 to 5
steps).

Because of point 1 a compact and useful representation of
FCNN state evolution can be given.

Point 2 allows implementation of FCNN on digital devices.
This type of implementation exploits both programmability
and high level design tools.

Point 3 is fundamental for the using of powerful and robust
heuristics in the learning phase.

Similarly to the universal CNN machine, FCNNs are the
kernel for an environment dedicated to image processing and
composed by two modules: the first module (Learning
Module, LM) performs FCNN learning, determining the
cloning template which allows the best approximation
(according to the euclidean norm) of the desired
transformation. The second module (Elaboration Module,
EM) uses a sequence of FCNNs (determined through LM) to
perform a complex image transformation; each FCNN, by
means of its state evolution, implements an elementary
transformation. The environment we developed uses the
following steps:

• a complex transformation (C) is decomposed into a
sequence of elementary transformations (E); a
transformation is specified by the pair <input image –
output image>;

• FCNN, which implements E, is determined by LM
whenever the cloning template is not yet available;

• EM performs C by sequentially transforming input
image through Es. EM uses a library of Es (dynamically
upgraded through LM) implemented in an optimized
way onto a (eventually specialized) digital computer.

LM is based on powerful heuristics like Simulated Annealing
(SA) [4] or Simulated Tempering (ST) [5]; such techniques
allow a deep exploration of the searching space but need a
very large number of error function evaluations. So, in the
case of CNNs, they cannot be adopted due to the very long
times needed to compute the error function (the complete

transient must be simulated [6]); consequently, CNN use
simpler but less robust learning algorithms (like back-
propagation [7]). On the contrary, thanks to previous point 3,
FCNNs give their output within few steps of dynamic
evolution, allowing a fast evaluation of error function. SA or
ST can be so used without occurring in very long learning
times (a typical learning operation requires nearly 1 to 5
minutes on a Pentium II machine).

In this work, after an introductory explanation about FCNNs
and their learning algorithms, we show how they can be used
to perform complex transformations on images; a
transformation is obtained through a sequence of elementary
steps, each one implemented by a FCNN whose cloning
template is determined on the basis of the desired
elaboration.

���)&11�7+(25<

FCNNs are characterized by a bidimensional toroidal
topology, i.e. neurons are defined over an (P x Q) grid with
connections between corresponding neurons on opposite
borders. Given two points pi=(xi1,xi2) (i=1,2), we consider
the case of an (P� x P) grid and we define the distance
between p1 and p2 as:

()
()





−−

−
=

=

=

LL
L

LL
L

[[P

[[
SS'

21
2,1

21
2,1

21 max

max
min),(

On a FCNN, the neighborhood with radius U of a neuron S is
the set 1U�SL��of all the neurons at distance less or equal to U,
i.e.

(){ }USS'5SSSS1
LLLU

≤∈= ,,,)(

Neuron with coordinates (i,j) is connected to neuron (k,l) if
(k,l) belongs to the neighborhood of (i,j). The weight
connecting the two neurons is),(),(ONMLW → .

As in classical CNN, each neuron is connected to its
neighborhood by the same set of weights. Because of its
spatial invariance, the set is called Cloning Template and is
defined as

{ }),(),(|),(),(ML1ONW&7 UONML ∈= →

For instance, in the case of &7 with radius U=1, neuron (i,j) is
connected to itself by the weight t(i,j)→(i,j) and to the nearest
neighbor neurons on the North, South, East, West, NE, NW,
SE, SW directions by the weights t(i,j)→(i+1,j), t(i,j)→(i-1,j),
t(i,j)→(i,j+1), t(i,j)→(i,j-1), t(i,j)→(i+1,j+1), t(i,j)→(i+1,j-1), t(i,j)→(i-1,j+1),
t(i,j)→(i-1,j-1).

The following figure shows the interactions among a neuron
and its east and south neighborhoods.

t

t
t

t

t
tt

t

t

0,0

0,-1

1,-1

1,0

1,1

0,1-1,1

-1,0

-1,-1

t

t
t

t

t
tt

t

t

0,0

0,-1

1,-1

1,0

1,1

0,1-1,1

-1,0

-1,-1

t

t
t

t

t
tt

t

t

0,0

0,-1

1,-1

1,0

1,1

0,1-1,1

-1,0

-1,-1

As we see, each neuron interacts with the neurons within its
neighborhood through the same set of weights, the Cloning
Template (CT).

&7�fully determinates the elaboration performed by a FCNN.
In fact, indicating with VL�M�Q� the state of neuron (i,j) at the
discrete time instant Q, the successive state is derived through
the state evolution equation

∑
∈

→ ⋅=+
),(),(

,),(),(,)()1(
ML1ON

ONONMLML

U

QVWQV (1)

The output of a FCNN is determined by the sign of the first
derivative of the state, that is









<+−
=+
>++

=+
)()1(1

)()1()(

)()1(1

)1(

QVQV

QVQVQ\

QVQV

Q\

LMLM

LMLMLM

LMLM

LM (2)

Frequently it is useful to use FCNNs which elaborate only
neurons with initial state greater than 0, that is





 >⋅

=+
∑
∈

→

RWKHUZLVH

VVW
QV

ML

ML1ON

ONONML

ML
U

0

0
)1(

,

),(),(

,),(),(
, (3)

we call them Active FCNN (AFCNN) because they elaborate
only neurons not in the off state.

We introduce now a compact representation of FCNN, based
on matrices.

A radius U cloning template is expressed through the weight
matrix W:

()























=++

++++−

+−

−+−−−

UUUUU

UU

UUUUU

WWW

WWW

WWW

UUW

,,0,

0,0,00,

,,0,

)12();12(

LL

M

LL

M

LL

 (4)

Let us consider a 4×4 FCNN with cloning template with
radius U=1:
















=
















=

−

−

−−−−

876

543

210

1,11,01,1

0,10,00,1

1,11,01,1

)3;3(

WWW

WWW

WWW

WWW

WWW

WWW

W

As FCNN is 4×4, let us consider a 4×4 block right circulant
matrix RP, i.e a matrix having 4×4 blocks as entries, each
row being obtained as a rotation toward right of the previous
row, i.e.



















=

1432

2143

3214

4321

5S5S5S5S

5S5S5S5S

5S5S5S5S

5S5S5S5S

53 (5)

Block entries 5Si (i=1,…,4) are still 4×4 scalar right circulant
matrices, defined through the W�weights:





















=





















=





















=





















=

102

210

210

021

43

768

876

876

687

2

435

543

543

354

1

0

0

0

0

,

0000

0000

0000

0000

,

0

0

0

0

,

0

0

0

0

WWW

WWW

WWW

WWW

WWW

WWW

WWW

WWW

WWW

WWW

WWW

WWW

5S5S

5S5S

5S1, 5S2, 5S4, are the right circulant matrices associated to
the three rows of the cloning template)(543 WWW ,

)(876 WWW ,)(210 WWW and obtained by inserting a

zero in the 3rd position; 5S3 is the null 4×4 matrix.

FCNN state at (discrete) time n can be represented through
the column vector

[]T4321)n()n()n()n()n(VVVVV = ,

whose ith entry (i=1,2,…,n) is the column vector

[]T4,i3,i2,i1,ii)n(s)n(s)n(s)n(s)n(=V ;

so we can think the bidimensional state of an P×P FCNN as
an P2 column vector, obtained by row-wise representing the
state matrix.

On the base of previous definitions, it is easy to verify that
evolution of FCNN state from time n to (n+1) can be
compactly written as:





















⋅





















=





















+
+
+
+

)(

)(

)(

)(

)1(

)1(

)1(

)1(

4

3

2

1

1432

2143

3214

4321

4

3

2

1

Q

Q

Q

Q

Q

Q

Q

Q

V

V

V

V

5S5S5S5S

5S5S5S5S

5S5S5S5S

5S5S5S5S

V

V

V

V

 (6)

In the general case of an P×P�FCNN, we indicate with 5Si

the P×P right circulant matrix associated to the (i-r+1)th row
of the radius U cloning template W (eq. 4) extended through the
insertion of zeroes into the U+2,…,P-U positions:





























=

−

−

−

−−

−−

NNUNUN

NUNNU

NUNNU

NNUNN

NNUNUNN

L

WWWW

WWW

WWW

WWWW

WWWWW

,0,,,1

,,0,

,,0,

,2,,0,1

,1,,,1,0

00

000

000

0

0

LLL

M

LLL

LLL

M

LLLL

LLL

5S




=
+=




−=
+=

1-M-ik
M1,...,r-Miand

1ik
r,...,ibeing 11 (7)

and 5Si is the null P×P matrix when U+2≤ i ≤P-U.

Now we are able to write eq. 6 for the general case of an
P×P FCNN having cloning template with radius U:





















⋅





















=





















+

+
+

−

)(

)(

)(

)1(

)1(

)1(

2

1

12

11

21

2

1

Q

Q

Q

Q

Q

Q

00

00

0

0 V

V

V

5S5S5S

5S5S5S

5S5S5S

V

V

V

M

L

MM

L

L

M
(8)

With obvious extension of notations to the general case, we
can write one step evolution of FCNN state as:

)()1(QQ V53V ⋅=+ (9)

Because of associative property of matrix product, evolution
for m instants of the FCNN state is compactly given by:

)()(QPQ
P

V53V ⋅=+ (10)

��� 7+(�/($51,1*�$1'�7+(
(/$%25$7,21�02'8/(6��/0��(0�

An elementary transformation E is specified through the pair
<initial image Ii - output image Io>.

An FCNN is characterized by

• the radius U of CT and

• the number of simulation steps Ns.

Depending on the locality of the elaboration to be executed,
Ns varies from 1 to 5; for a given problem, the larger is U, the
smaller is Ns. Le us consider a computation in which a
neuron changes its state depending on the state of a neuron at
distance d: such a computation can be obtained through an
FCNN having radius U=d/k and Ns=k (k=1,2,…). The
increasing of k causes a reduction of U but also of the
transformation accuracy: so we search for a trade-off between
speed (small U and large Ns) and accuracy (large U and small
Ns) of the elaboration. The increasing of k moves the
propagation of the influence of a neuron from space to time.

We indicate with ,�&7�,L�1V� the image obtained by
elaborating for 1V� steps� ,L through the FCNN with cloning
template &7.

Once specified E=<Ii,Io>, we chose a couple <U, Ns> and,
using these values, LM searches for the CT* which gives the
best approximation of the E transformation. In order to find
the desired CT, LM must solve the following minimization
problem:

() ()()1V,&7,,1V,&7,, LR
&7

LR ,,min,,* −=− (11)

Solution of the previous problem gives the &7
 which allows
the best approximation of the desired ,R.

We nearly solved problem (11) through either Simulated
Annealing(SA) [4] or Simulated Tempering (ST) [5]
algorithms; they both are heuristics based on Monte Carlo
simulations at several temperatures, corresponding to
situations in between the melted and frozen states. SA and ST
algorithms use the New(CT) function which returns a CT’
slight differing from CT (for example one or two weights are
varied of a small percentage of their original value). An
outline of the SA algorithm is the following, where the
cooling schedule (i.e. the starting temperature W�,�the cooling
parameter k<1 and the IUR]HQ condition) is determined as
reported in [8] (ST is easily derivable from SA with little
modifications).

6$�DOJRULWKP
,QSXW
U, Ns, Ii, Io;
2XWSXW

CT* so that () ()()1V,&7,,1V,&7,,
LRLR
,,,,* −≤−

%HJLQ
W:=W0
cost:= ()1V,&7,,

LR
,,−

ZKLOH not IUR]HQ
 IRU L=1 WR N GR

CT’=New(&7);

costnew= ()1V,&7,,
LR
,,’− ;

accept=0,
if (costnew<cost) accept=1;
else if exp((cost-costnew)/t)>p accept=1;
if accept=1 C7=C7�’; cost=costnew;

HQG�IRU
W:=k*W;

HQG�ZKLOH
HQG

Previous algorithm requires nearly from 1 to 5 minutes to
determine &7�on a Pentium II machine.

Once obtained CT performing E, LM inserts it into a library
(CT_LIB) containing all the CTs available.

The Elaboration Module (EM) consists of an optimized
implementation of FCNN (and AFCNN). EM is programmed
by sequentially calling the cloning template performing a
given transformation and specifying its input and output

images. The composition of all these transformations
performs the desired complex transformation C=<Ii,Io>.

A typical program for EM is

%HJLQ

CT_identifier_1(Ii1,Io1)/OP_identifier(Ii1a,Ii1b,Io1);

…

CT_identifier_k(Iik,Iok)/OP_identifier(Iika,Iikb,Iok);

HQG

where CT_identifier is one of the CTs contained in the
CT_LIB and OP_identifier denotes one of the operators
(which implement the functionality clearly specified by its
name) MASK_AND, MASK_OR, MASK_XOR,
IMG_DIFF, IMG_ADD, IMG_NOT

��� (;$03/(��7(;785(
5(&2*1,7,21

In this section we show how EM can be used to extract
uniform and texture areas from an image. We use the
following CTs:

• Edge_Detect,

• Empty_Homogeneous_Areas,

• Fill_Texture_Areas.

For each CT we report the pair <Ii,Io> describing the
elaboration, the cloning template obtained through LM and
the corresponding output image.

1. Edge_Detect

-0.10 0.34 0.12

0.57 ����� 0.39

0.07 0.42 0.02

2. Empty_Homogeneous_Areas

0.45 0.87 0.33 0.64 0.67

0.96 0.34 -0.59 -0.11 0.40

0.42 -0.03 ����� -0.25 -0.08

1.00 0.41 0.17 0.55 0.79

0.78 0.17 -0.15 -0.11 0.57

3. Fill_Texture_Areas

0.40 -1.00 -0.63 -0.50 -0.26

1.00 0.79 0.91 0.97 0.89

-0.46 0.55 ���� 0.01 -0.01

0.45 1.00 1.00 0.98 0.85

0.85 0.38 0.87 -0.17 -0.07

The EM program to detect homogeneous and texture areas is
the following:

EHJLQ
Edge_Detect(Im1,Im2);
Empty_Homogeneous_Areas(Im2,Im3);
Fill_Texture_Areas(Im3,Im4);
MASK_OR((Im1,Im4, Im_homogeneous);
IMG_NOT(Im4,Im5);
MASK_OR((Im1,Im5, Im_texture);
HQG

In sequent figures we show the input image (baboon) and the
intermediate and output images of previous program.

Original (Im1) Edge detection (Im2)

Empty (Im3) Fill (Im4)

Im_texture Im_homogeneous

��� 5()(5(1&(6
[1] L.O. Chua, L. Yang, “Cellular Neural Networks:

Theory”, IEEE Trans. on CAS, vol. 35, 1257-1272
(1988)

[2] L.O. Chua, L. Yang, “Cellular Neural Networks:
Application”, IEEE Trans. on CAS, vol. 35, 1273-1290
(1988)

[3] T. Roska, L.O. Chua “The CNN Universal Machine: an
analogic array computer”, IEEE Trans. on CAS-II,
march 1993.

[4] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi,
"Optimization by Simulated Annealing" Science, Vol.
220, No. 4598. pp. 498-516, May 1983

[5] E. Marinari, G. Parisi, “Simulated Tempering: a new
Monte Carlo scheme”, hep-lat/9205018

[6] T. Kozek, T. Roska, O. Chua, “Genetic Algorithm for
CNN Template Learning”, IEEE Tr. CAS, vol. 40, no 6,
pp 392-402, june 1993

[7] Balsi, M. “Recurrent back-propgation for CNN”, H.
Dedieu (Ed.), ECCTD’93, Elsveier Science Publisher,
Amsterdam, 1993, 677-682.

[8] Deckers A., Aarts E., "Global Optimization and
Simulated Annealing", 0DWKHPDWLFDO� 3URJUDPPLQJ,
Vol. 50, 1991.

