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A new �ngerprint image representation which cap-

tures both the local features such as minutiae and the

global features such as overall ridge structure is pre-

sented. The basic tool is a set of oriented band pass

�lters which are parametrized by three parameters. We

relate quantitative �lter responses to the structural

characteristics of the �ngerprint ridges.

1 Introduction
The inner surface of a �nger is covered with a pat-

tern ( Figure 1) which is unique for each individual,
enabling the use of �ngerprint image as a means of
identifying a person. Automated identi�cation and
veri�cation of �ngerprint images play a very impor-
tant role in security applications when an access to a
facility need to be controlled.

Fingerprint analyses are based on overall shape of
ridge curves i.e curvature of the ridge curves and cer-
tain local features called minutiae. Minutiae points
are the singularities of the �ngerprint ridges. Most
typical minutiae are the bifurcation points where a
ridge splits into two ridges, and the termination points
where a ridge ends.

In literature several approaches to �ngerprint anal-
ysis have been proposed. Mostly, these approaches are
comprised of a couple of modules which transform in-
put �ngerprint image �rst to a binary image and then
to a ridge representation. Points of interest e.g. minu-
tiae are detected from the ridge representation [5].
Binarization process is not only time consuming but
more importantly it may cause a loss of signi�cant in-
formation while retaining irrelevant details. Recently
algorithms for detection of ridges directly from raw
�ngerprint images are presented in [1, 4]. In ridge
representation necessary information is implicit. Fea-
tures such as minutiae still need to be extracted. On
the other hand minutiae representation alone fails to
describe overall ridge pattern.

We transform raw �ngerprint image into a repre-

sentation where both the localized features such as
bifurcation points and the information about overall
ridge structure is captured. This paper describes our
preliminary results.

2 The Approach
Our approach is based on utilization of a set of

Gabor like oriented �lters which are parametrized by
three parameters which determine the �lter orienta-
tion, spatial frequency and �lter width respectively.
The �lters are obtained by multiplying a cosine func-
tion with an elongated Gaussian, thus, the �lters are
band pass in one direction and low pass in the orthog-
onal direction.

At the �nest scale (scale=0), we require that the
�lter extend from one valley point to the next consec-
utive valley point in the band pass direction. Thus
the standard deviation of the elongated Gaussian in
the band pass direction should be equal to the 1=6th

of the peak to peak pixel size. At scale s the standard
deviation increases by a factor of 2s+1. The standard
deviation in the low pass direction is taken to be the
double.

Consequently, a �lter F�;W;s at a given orientation,
spatial frequency and scale is given by
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Filter response R�;W;s for a given image is the con-
volution of the image with F�;W;s. A sample set of
�lters at scale=0 and the �lter responses obtained for
the sample image are shown in Figures 2 and 3 respec-
tively.

Our goal is to relate quantitative �lter responses,
in the 3D response space, to the structural features.



2.1 Normalized Response

Filter response at a point is maximized when the
�lter orientation matches to ridge orientation and the
spatial frequency of the �lter matches the ridge width.
Normalized response Ns at a given scale s is de�ned
as follows:

Ns(x; y) = max
�;W

R�;W;s(x; y) (2)

This process normalizes the response with respect
to scale and pose changes. Scale parameter deter-
mines the �lter width, thus the detail level at which
the analysis to be performed. At each scale, we de-
�ne orientation and spatial frequency maps as the val-
ues of orientation and scale which yield the maximum
response. We expect that both the orientation and
spatial frequency maps will be smooth except certain
locations. These locations are either the minutiae or
the extremum points of the ridge curves.

3 Illustrative examples

A synthetic image and the corresponding orienta-
tion map is shown in Figure 4. The orientation map
is smooth except at the ridge corners. Figure 5 shows
the orientation map for a section of the sample image
at three scales. When scale is 0, there are too many
points of abrupt change. As the scale gets coarser ori-
entation map becomes smoother. Among three sample
points only the leftmost point which is a true bifurca-
tion has an orientation discontinuity at scales above
0. For a sample image, the locus of the points with
an orientation change is shown in Figure 6. Figure 7
displays the same loci for a rotated image.

4 Issues

One of the most important issues in our approach
is the discretization of the parameter space. In our
initial experiments we used �lters at 8 equally spaced
directions. The values for the spatial frequency is cho-
sen manually and it reects the scale of the original
image. To elaborate, if the peak to peak pixel size
varies between a and b, the spatial frequency values
are sampled from the interval

�
1

b
; 1
a

�
.

Number of �lters at di�erent spatial frequency val-
ues are not very large and the determination of the
correct spatial frequency values may be done auto-
matically from a small window in the image. However,
the discretization of the orientation space is quite crit-
ical. For example, instead of rotating the image by 22
degrees (which is very close to 22:5), if we rotate it
by 30 degrees, the result may not preserve the invari-
ance. Of course, if we sample the �lter orientation at
10 degrees apart, rather than 22:5, the problem will be

solved. However, it is computationally very expensive
to compute the �lter response for each possible value
of the parameter set.

Following the work of Freeman and Adelson [2], a
concept called steerable �lters received attention. The
basic idea is to compute a set of \basis �lters" at se-
lected parameter values and to compute the rest of
the �lters as the linear combination of the basis �lters.
Since the convolution operation is linear, it is possible
to express the �lter response at any parameter value
as the combination of the basis responses.

Recently a concept of \approximate steerability" is
introduced for functions (�lters) which are not steer-
able and methods for computing best steerable ap-
proximation is presented [3, 6]. It is possible to use
these methods to exhaustively discretize the rotation
parameter space.

A second issue is the relative weakness of the
method in catching end points compared to catching
bifurcation points. A quite simple solution is to re-
verse the image and perform the same operation, since
the end points are the bifurcations of the valleys.

5 Conclusions and Future Work
A new way of representing �ngerprint images for

analysis purposes is presented. The representation
captures both the minutiae and the overall ridge pat-
tern. We utilized oriented band pass �lters and give
the relation between the quantitative �lter response
and the ridge patterns. The diÆculty arise in dis-
cretizing the parameter space and we proposed the
use of approximate steerability to solve the problem.

We are developing a method for computing steer-
able approximation for our �lter using a polynomial
approximation and neural networks. It is also possi-
ble to use group theoretical method presented in [6].
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Figure 1: Sample �ngerprint image
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Figure 2: A sample set of �lters at scale 0.
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Figure 3: The corresponding responses for the sample
image.
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Figure 4: A synthetic image and its orientation map
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Figure 5: Orientation maps in a sub image at three
scales. Top image is the map at scale= 0, left image
on the bottom is at scale= 1 and the right image on the
bottom is at scale= 2. Light areas are the �ngerprint
ridges. At scale= 0, there are many points of abrupt
orientation changes. As the scale gets coarser orien-
tation map becomes smoother. Among three sample
points only the leftmost point which is a true bifurca-
tion has an orientation discontinuity at scales above
0.
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Figure 6: Sample image and its representation.
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Figure 7: Rotated image by 22 degrees and its repre-
sentation


