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ABSTRACT that the number of states should be somehow proportional

. . i . to the length of the observation sequence and to the code
This study deals with the shape recognition problem usmgbook sizegfor the HMM. However r?igher number of non-

the Hidden Markov Model (HMM). In many pattern " ;
zero transitions does not always, provide better

recognition applications, selection of the size and i tes. but Iti i tational ¢
topology of the HMM is mostly done by heuristics or recognition rates, but result in extra computational. cos

using trial and error methods. It is well known that as the Ergodic topologies enable the revisits of each state with
number of states and the non-zero state transitionProbability one in finite intervals, by allowing non-zero
increases, the complexity of the HMM training and State transition paths between any two states. However,
recognition algorithms increases exponentially. On thethey do notimpose a temporal order. Therefore, when the
other hand, many studies indicate that increasing the siz@bservation sequence has a temporal order, ergodic
and non-zero state transition does not always yield bettefnodels do not fully utilize the temporal information of the
recognition rate. Therefore, designing the HMM topology data.

and estimating the number of states for a specific problem _
is still an unsolved problem and requires initial On the other hand, the temporal topologies do not allow

investigation on the test data. the revisits to the previous states by constraining the state
transition probabilities, ;&0 for  i+k, where k is a small

This study addresses a specific class of recognitioninteger compared to the total number of the states. This

problems based on the boundary of shapes. The papeFonStraim yields a sparse state transition matrix, where
investigates the affect of the HMM topology on the the nonzero entrie; lie only in the few upper diagof‘?"s-
recognition rate. A new topology, called circular HMM, For _th's_ reason, n most of the pattern recogmt_lon
is proposed and tested on the handwritten character@PPplications, it is accustomed to use, so called, left-right
recognition problem. The proposed topology is both model. This model eliminates estimating the initial state
ergodic and temporal. It eliminates the starting and probgblll_tles because it has a single starting and
ending states with the circular state transitions. The termm_atmg state. R

experiments indicate excellent performance compared toExperimental results of many studies indicate that left-

the classical temporal and ergodic HMM models. right topologies are more appropriate to reach the
maximum recognition rates in many applications, such as
1. INTRODUCTION speech and optical character redtign. However, when

the feature set consists of the quantized values of a closed
Hidden Markov Model (HMM) is a widely used powerful boundary, it is very difficult to identify consistent starting
tool for many pattern recognition and image analysis and ending points on a boundary of the object to represent
problems. There is a tremendous amount of variations otthe observation sequence. Therefore, in the recognition
HMM applications, which input various feature sets into problem based on the object boundaries, the available
various HMM sizes and topologies [1]. Efficient iterative HMM models yield very low recognition rates if the
algorithms are available for estimating the model feature sets do not have a geometrically meaningful
parameters of observation probability and state transitionstarting and terminating points.
matrices. However, all of the approaches presume a model ) o o
size and topology [2]-[6]. Unfortunately, there are no Although, there is not an exact cnter!on, it is generally
effective methods for estimating the optimal number of @ccepted that the number ofates is taken to be

states and/or the nonzero state transitions for a specifi®roportional to the length of the observation sequences

feature set. Many pattern recognition applications indicate2nd/0r the number of distinct observation [6]. This fact
brings another complicated problem for size invariance:



In order to make a consistent platform for comparison of

the HMM probabilities, the sizes of the boundaries are to

be normalized for generating fixed length observation Figure 1. Circular HMM for S=8 andN=1
sequences for the patterns.

In this study, a new topology, called circular HMM, is 2. THE CIRCULAR HMM

proposed. This topology is a simple modification of left- . o
to-right HMM model, where the initial and terminal states Suppose that a sha_pe can be characterlged by its discrete
set of boundary points drawn from a finite alphabet or

are connected through the state transition probabilities.f tized vect ¢ Heok. Si Iso. that
This connection eliminates the need to define a startingrom quantized vectors of a Coeox. IPPose, also, tha

point of a closed boundary, in the recognition problem. the bOLt"?daW dstrmg IS theL cgbscc)er\iable output of a
The proposed HMM topology is both temporal and parametric random process. Let, = (Qur, Oz
ergodic. Therefore, the states can be revisited in finiteo‘+T'1) represents the closed boundary of length T, over an

time intervals. This structure enables one to decide on théalpr;"’_‘bet \é:f.{\i"" ;k W‘}'dw'th. Dlil"ddq - CM)HTI(. OMurd |
optimal state order by simple experiments on the traininggo"?1 Is to define a discrete density Hidden Markov Model,
data and requires no size normalization. which represents each boundary class and labels an

unknown boundary

The ci_r(;ular HMM is tested on the optical character The circular HMM for each boundary clabs1,..
recognition problem b_ased on the. bqundary features.represented by a three tuple = {A |, B | ,S}. The state
Although the computational complexity is the same, the . - ]

circular HMM has many superiorities compared to the transition probability matrix, A = [gj] and the
left-right model. First of all, the circular HMM does not observation probability sequence of observing the code k
require to increase the number of states as the size of thg, jth state for i i, i<S, B ={bjK)} satisfies the
boundary increases. Therefore, it is size invariant.
Secondly, circular HMM does not require as many non-
zero state transition probabilities as the left-right models.1) j=i+n, n=0,1,...,N
Therefore, the computational complexity of the circular 2) a; = ]

HMM is less than the left-right models or other more g Ta+sj+s,
complicated topologies for the same recognition rates. 3) bj(k) = b4+g(k) and

.,C is

following conditions:

In Section 2, the circular HMM and its mathematical 4) N<<S ,
representation is introduced. In Section 3, an application h s h ber of q
of circular HMM to optical character recognition problem Where S represents the number of states and N represents

is presented. Finally, Section 4 concludes the paper an&he_ maﬁlmurr? number Of, Q|fferentc)eb$etween_ ! ar;]d J-
gives the experimental results. Notice that the state transition probability matrix, where

each entry, if represents the probability of moving from

state i to j is still very sparse €4S) as in the left-right
HMM. For example for N=1, the State transition matrix

|"ﬁ" has the following form:
¥
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l | The probability of observing a specific boundary sequence
a by a HMM is obtained as the sum of the probabilities of




observing this sequence for every possible state sequende cast consistent comparison platforms. Hundreds of

of the HMM, i.e.: research articles and patents are available in the literature
and dozens of commercially products are available in the

P(O|/\1 ) =3 P(Q (j/\) : market. In spite of the intensive effort the Optical

allQ Character recognition of free style hand writing problem

is not fully solved yet. Rather then developing an optical
where Q is the hidden state sequence, which generatesharacter recognizer, the goal of this study is to show the
the given observation sequence O aydis the HMM power of the circular HMM in the shape recognition

model for th boundary class. Adjusting the And B problems, using a HMM based shape recognizers.

parameters of a HMM model, we may obtain high RO/ First, the boundaries of characters are extracted from the
binarized document image. Then, they are coded by
Freeman’s chain code, as indicated in Figure 2. The
cursive handwriting is segmented by the algorithm
proposed in [3]. Since our goal is not to design the best
A popular algorithm for the parameter adjustment is the Optical character recognizer, only the oute.r. boundaries for
Baum-Welch method [1] which is an iterative update and 8ch character are used for recognition. However,
improvement of HMM parameters according to the inclusion of the inner boundaries definitely yields better
training set of the coded patterns. In the recognition stagelesults in the OCR problem. However, it makes no
the probability of observing the coded patterns by everydifference in comparing the proposed HMM topology to
HMM is calculated. Then, the observed string is labeled the other topologies, studied in the literature. The coded
with the class which maximizes the probability QY boundaries are used as feature vectors of a discrete density

. ¢ ; A ) i : HMM model, with varying sizes and topologies. The
Computation of P(Q4) for eachA requires an iterative effect of changing the size and non-zero state transitions

process, called forward-backward algorithm [6]. on the recognition rates are investigated.

4. EXPERIMENTS AND CONCLUSION

The experiments are performed on the NIST-SD 7
(Special Database for Handwritten Numbers). C
programming language is used on a UNIX workstation
environment. In the preprocessing stage, the binary image
is smoothed by an averaging filter and the outer contour
of each number is coded by the Freeman's chain code.
This coding scheme vyields observation sequences of the
HMM with varying length, depending on the size and

probability values for observations from the true class and
low probabilities for false ones.

(&) (b (c) type of the number digits. Evidentially, some numbers
Chain Coded Sequence 122322234434 4444565445544334333456555566 (like; 1's, 2's) have relatively shorter observation
BEEGEEETTTITON000011107777776670110122222122222223202 sequences then the others (like; 4's or 9's). It is observed

that the length of the observation sequence varies between
Figure 2. Coding of the handwriting using freeman's chain ~ 70-120 codes for number digit in a frame of 32x32
codes (a) binary image, (b) boundary extracted image and (c) pixels.
outer contours .

First, the experiments are performed on the discrete
density left-to-right HMM of various sizes and topologies.

3. OPTICAL CHARACTER 100 samples from each class are used for training. Then
RECOGNITION (OCR) WITH THE the remaining samples of NIST-SD 7 database are fed to
CIRCULAR HMM the recognizer. The optimal topology, which makes the

recognition rate maximum is investigated by trial and
Although the proposed HMM topology is applicable to error, For this purpose, the number of states (S) of the
any shape recognition problem, in this study, it is testedymM is increased gradually and for each S the number of
on the handwritten character recognition problem, sincenon-zero state transition probabilities (N) are increased to

this problem is well defined and investigated for a long reach the full rank of the state transition probability
time. There are standard handwriting databases availablenatrix. It is observed from Table 1 that for each S, the



optimum number of the non-zero state transition is circular HMM is always less then the optimal nonzero
different. For example; for S=10 states, the optimum state transition of the classical models.

number of non-zero state transition is N=4 which gives

84.2% recognition rate. For N=5 the recognition rate

decreases to 79.8%. Similar trends are observed as we
increase the HMM size (See: Table 1). This result
indicates the sensitivity of the HMM recognizer to the
HMM topology. Therefore, HMM topology depends on
the number of states for the left-to-right model. As we
increase the number of states, the recognition rates
increase.
improvement on the recognition rates. For very large sizes
(N>32) of HMM the recognition rates start to gradually

decrease. The length of the observation sequence is

normalized to a fixed size for this case. The starting and[S]

terminating points of the boundaries are manually
selected. It is observed that if the starting and terminating
point of the observation sequence are not selected

carefully or the observation sequences are not normalizeg4]

to a fixed size, the recognition rates get as low as 60%.
Table 1 indicates that the recognition rates are achieved
in between 79-92%.

The experiments performed on the circular HMM did not [5]

pay any attention to estimate the initial points on the
boundary. The observation sequences are not normalized

to a fixed size. Therefore, it requires less preprocessinge)

power compared to the left-to-right HMM. For relatively
small HMM sizes (N=10, 12, 14, 16, 18), the highest :
recognition rates are always for S=1, indicating the best :
nonzero state transition number for each size. As we:
increase the size S, the optimum topology which makes ;
the recognition rates maximum requires larger S,
indicating a meaningful relation between the HMM size ¢
and number of nonzero state transition (See; Figure:3)."
This result indicates the stableness of the circular HMM ©
to the size variations. Nevertheless, keeping S=1 anc:
increasing HMM size gives the most efficient method for *
identifying the optimum state size S. Because, this
approach steadily increases the recognition rates with the
least amount of computational complexity. For N=1, the
recognition rates of the circular HMM varies between 86-
92% as the state size increases from S=10 to S=32.
Figure: 4 indicates the maximum recognition rates at each
HMM size for the circular HMM and the left-to right
HMM. As it is observed from this figure, circular HMM
has superior performance for all sizes except for S=24.
Note also that, the circular HMM requires less
computational complexity compared to the classical HMM
topologies because the optimal nonzero state transition for

(1]

After a certain size, there is no significant[2]
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Figure 3. Relationship between the state size and
optimum topology.



Figure 4. Performance of the left-to right and circular HMM

for the best topology.

3 83.1 87.4
4 83.2 87.7
5 87.7 87.1
1 90.8 89.8
2 89.5 90.6
24 3 88.1 89.3
4 88.6 90.6
5 90.5 90.6
1 85.8 90.7
2 89.9 90.3
28 3 89.5 90.2
4 87.3 91.4
5 89.8 91.0
1 92.0 92.1
2 90.8 91.8
32 3 84.6 91.7
4 86.2 92.4
5 88.5 90.6

TABLE 1
No. of States| No. of Nonzerp Rec. Rates in| Rec. Rates
State Trans. | Left-to-right in Circular

HMM HMM

1 82.7 86.6

2 83.1 80.1

10 3 84.2 77.5
4 82.3 75.6

5 79.8 77.1

1 88.0 89.7

2 87.6 88.7

12 3 84.3 77.4
4 85.0 80.4

5 88.4 77.1

1 84.5 89.2

2 85.7 88.1

14 3 87.5 83.6
4 85.3 80.6

5 86.4 81.8

1 87.4 89.1

2 87.7 86.7

16 3 87.3 85.6
4 87.4 83.4

5 87.3 84.2

1 85.3 88.1

2 85.4 87.6

18 3 86.2 85.0
4 87.7 84.9

5 87.5 84.8

1 87.2 86.5

2 87.2 88.5
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