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ABSTRACT

In super high-de�nition image applications such as med-
ical image archival, progressive and lossless coding is
required since any degradation in the decompressed
image is unacceptable. Recently, nonlinear subband
decompositions have received much attention as they
provide very compact multiresolution representations
and they allow exact reconstruction of the input image.
Within this framework, we propose to design optimized
decompositions adapted to the variations of the statis-
tics of the images under study. Comparative investi-
gations are performed by simulations, indicating that
the proposed decompositions outperform the existing
lossless compression techniques.

1. INTRODUCTION

Progressive image transmission is recommended for im-
age data retrieval and telebrowsing of image databases
[1]: an approximation of the image is rapidly displayed
and re�ned gradually until the original image is ob-
tained. Multiresolution decompositions [2] and pyra-
midal algorithms [3] have been extensively used for
compression owing to their progressiveness. An ap-
propriate choice of the decomposition reduces the en-
tropy in the subbands and the progressive coding is
performed by sequentially transmitting the subbands
starting from the lowest resolution subimage. How-
ever, coders based on such linear subband decomposi-
tion are generally lossy since the coe�cients have to be
rounded and quantized before the entropy coding stage.
In certain �elds such as medical image coding or mili-
tary satellite imaging, using reconstructed images with
(even small) artifacts are not acceptable since they may
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lead to erroneous diagnoses. In such areas, a lossless
coding is required. Therefore, in the context of exact
coding, the decomposition must achieve perfect recon-
struction from the quantized coe�cients, which is not
in general an easy task.
Recently, a solution to the problem was provided thanks
to new wavelet transforms that map integers to integers
(see e.g. [4, 5, 6, 7]). These ones represent a nonlinear
extension of the wavelet decomposition [8] which use
the lifting scheme for rounding o� the resulting coe�-
cients. The proposed schemes involve �xed operators
which are not necessarily best adapted to the image
contents. The main motivation of our present work is
to optimize these operators in order to track the statis-
tical variations of the input signal. As proposed in [9],
we expect to increase the compression ratio by such an
optimization step.

This paper is organized as follows. Section 2 in-
troduces the nonlinear subband decomposition for a
multiresolution representation of the image. Section
3 addresses both problems of optimization of the pa-
rameters of the considered decomposition and entropy
coding of the resulting subbands. Finally, the results
of our simulations are presented and some conclusions
are drawn in Section 4.

2. NONLINEAR SUBBAND

DECOMPOSITION

The 1D nonlinear subband decomposition structure is
depicted in Fig. 1 [10]. We initialize the decomposition
process by setting c0(n) = x(n), where x(n) denotes
the signal to be coded. By an appropriate choice of
the operators H and G, the coe�cients cj(n) may be
viewed as the approximation coe�cients of the signal
at resolution level j whereas dj(n) are associated to the



details lost when passing from resolution level j to the
next coarser one (j+1). The two subband signal cj(n)
and dj(n) are given by:

�
dj+1(n) = A2

�
cj(2n)�H[cj(2n+ 1)]

�
cj+1(n) = A1

�
cj(2n+ 1) + G[A�12 [dj+1(n)]]

� ;

(1)

where cj(n)
4
=(cj(n + 2k))�N1�k�N2

and dj(n)
4
=

(dj(n+k))�N 0

1
�k�N 0

2
. Such nonlinear extensions of the

wavelet decomposition with critical subsampling allow
an exact reconstruction provided that A1 and A2 are
one-to-one mappings [10]. Indeed, the analysis �lter
bank in Fig. 1 is associated to a dual synthesis �lter
bank in a straightforward manner since the following
reconstruction equations are satis�ed:

�
cj(2n+ 1) = A�11 [cj+1(n)]� G[A�12 [dj+1(n)]]
cj(2n) = A�12 [dj+1(n)] +H[cj(2n+ 1)]

:

(2)

The perfect reconstruction in only due to the intrin-
sic structure of the decomposition. The approximation
signal is recursively processed over jm resolution levels
and a pyramid representation is built in this way. Ex-
tension to 2D signal can be obtained by decomposing
�rst the rows then the columns of the image. However,
reversing the order of the processing does not lead to
the same decomposition because of the nonlinearity of
the operators.
The performance of the decomposition is closely related
to the choice of operators H and G. Several two-band
decomposition have been investigated in our previous
works [6, 11]. One competitive two-band decomposi-
tion - which we call NL - consists in introducing non-
linear roundo� in each lifting steps:

�
dj+1(n) = cj(2n)� baTj cj(2n+ 1)e
cj+1(n) = cj(2n+ 1) + b 1

4
(dj+1(n� 1) + dj+1(n))e

(3)

where b�e denotes the rounding operation. It should
be noted that the coe�cients of the vector aj are not
necessarily integers so oating point operations can be
used to compute the integer coe�cients dj+1(n) and
cj+1(n). We can interpret dj+1(n) as the error of pre-
diction of the even samples by the odd ones. The up-
date step in evaluating cj+1(n) provides a smoother
low-pass signal as compared to direct down-sampling
cj+1(n) = cj(2n).
In this study, we focus on optimal determination of the
weighting vector aj for a more e�cient compression.

3. OPTIMIZATION

The e�ectiveness of the lossless coding is measured by
the zero-th order entropy H which is a weighted sum
of the entropies of the approximation and detail sub-
images. The more the entropy is decreased, the more
compact the resulting representation is. Therefore, a
�rst solution consists in minimizing the entropy of the
pyramidal representation. The problem is that the en-
tropy is an implicit function of the parameters of the
decomposition.

To solve this problem, we have used the Nelder-
Mead simplex algorithm [12] but its main drawback is
a very heavy computational load. So, other alternatives
have been investigated.

In particular, it is possible to calculate the coe�-
cients aj that minimize the variance of the detail coef-
�cients dj+1(n). It should be noted that this method
does not necessarily minimize the entropy. Its main
advantage is its computational feasibility. By using op-
timum linear prediction theory, the Yule-Walker equa-
tions are obtained. However, the normal equations hold
under the assumption of stationarity of the analyzed
signal, which is not generally valid for images. To track
the local variations of the statistics of the input image,
the predictor aj is made adaptive. The coe�cients of
the predictor aj are updated according to the following
normalized LMS adaptation rule:

aj(n+ 1) = aj(n) +
�

�+ jjcj(2n+ 1)jj2
dj+1(n)cj(2n+ 1):

(4)

To avoid the transmission of the predictor coe�cients
as side information, an adaptive backward con�gura-
tion is adopted.
Furthermore, it is known that the coarsest approxima-
tion signal at the �nal resolution level jm has statis-
tical properties similar to those of the original input
image. A classical DPCM with intra-image predic-
tion based on the three causal nearest neighbors can
be carried out and integrated within the operator A1

in Fig. 1. Another monoresolution coding technique
could be applied for a more e�cient decorrelation of
the root approximation subimage as for example, the
coder LOCO-I, associated to the current standard of
lossless coding JPEG-LS [13]. We denote by NL� the
NL decomposition combined with a DPCM coding of
the coarsest approximation sub-image.

Once the image has been decomposed, the result-
ing coe�cients must be encoded in order to generate
a bitstream. In the literature, subband entropy cod-
ing requires sophisticated encoding techniques based



on zerotree schemes like the embedded zerotrees de-
composition [14] or the set partionning in hierarchi-
cal tree [4]. It has been noted that the use of succes-
sive re�nements to create embedded bit streams be-
comes somewhat computationally expansive for loss-
less coding [15]. Thus, following the choices made for
the future compression standard JPEG-2000 currently
developped by the ISO, we do not employ an embed-
ded coder [16]. More precisely, each subband is coded
independently of the others. The main drawback is
that we do not exploit the eventual correlations be-
tween subbands through the stages of the pyramidal
representation. However, there are numerous bene-
�ts and the most important ones are the simplicity of
the implementation and a better error resilience, espe-
cially in the case of progressive transmission over noisy
channels. Furthermore, for applications of telebrows-
ing such as teleradiology, rate scalability is preferred
to quality scalability. A coarse version of the images
can be recovered by decoding rapidly each detail sub-
images.

4. EXPERIMENTAL RESULTS

The considered decomposition was carried out on test
images of di�erent types, initially coded with 8 bpp.
Here, we report the results for the 512 � 512 image
\Lena" and the 256�256 image \Boat". The initial en-
tropies are respectiveleyH0 = 7:4451 andH0 = 7:5747.
The choice of the number of levels jm corresponds to a
trade-o� between the decorrelation ability of the pyra-
midal representation and the e�ciency of the entropy
coder. Indeed, the e�ciency of entropy coders depends
on the length and the statistics of the input sequence.
For this reason, entropy coders do not perform well in
the case of small sub-images. Furthermore, it is recom-
mended to limit the number of stages of the decomposi-
tion in the context of progressive transmission because
the receiver is not able to recognize rapidly and reliably
images of small size at a coarse resolution. Thus, on
each image, we performed a jm = 3 stages decomposi-
tion.
The e�ectiveness of the considered decompositions is
measured by both the zero-th order entropy H and the
bit-rate r. The compression ratio Tc is derived from
compressed �le sizes (r = 8=Tc). In our experiments,
we just employed an adaptive Hu�man coder since it
is easy to implement and its decoding is very fast. Ob-
viously, an improvement should be expected by using
context-coders as proposed in [15], [16]. As a reference,
performances of the (monoresolution) lossless modes of
the standard JPEG [17] are reported in tables 1 and
2. Tables 3 and 4 contain the performances of several

pyramidal decompositions. We denote by (N; ~N) the
wavelet transforms that map integers to integers, pro-
posed by Calderbank et al. [5]. The numbers N; ~N
correspond repectively to the number of vanishing mo-
ments of the analyzing (resp. synthesizing) high pass
�lters. The transforms S and S+P correspond respec-
tively to the sequential transform and the sequential
plus predictive decomposition [4]. For the decomposi-
tion NL and NL�, in the case of �xed predictors, we
used level-dependent predictors obtained by a Nelder-
Mead algorithm. Some conclusions can be drawn from
Tables 3 and 4. There is no single transform that per-
foms best over the test images if we except NL�. In
the case of the \Boat" image, it should be emphasized
that the optimized version of the nonlinear decompo-
sition NL can lead to a signi�cant decrease in entropy
with respect to both the monoresolution cases and to
the other nonlinear subband decomposition currently
reported in the literature [4, 5]. However, Tables 3
4 show that it is not always useful to spatially adapt
any decomposition within a given image. For instance,
adapting the predictor of the (4,2) and the (4,4) trans-
forms decreases the entropy for \Boat" but increases
the entropy for \Lena". Finally, in Figure 2, the ap-
proximation sub-image at the second level are shown.
It can be seen that the S+P transform provides quite
a smooth images while the proposed nonlinear decom-
position lead to a slightly sharper result. For real com-
pression schemes, adaptive Hu�man entropy coders can
be used and we have compared the associated bit rates.
The results are tabulated in Table 5. They suggest that
an improvement could be expected by using a more so-
phisticated coder than the adaptive Hu�man entropy
coder.
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Figure 1: Nonlinear subband decomposition.

Technique H r (bpp) Tc

JPEG #2 4.6596 4.6542 1.7188
JPEG #4 4.7974 4.7885 1.6707
JPEG #5 4.7192 4.7117 1.6959
JPEG #6 4.575 4.5650 1.7524

JPEG #7 4.6063 4.6044 1.7375

Table 1: Performances of monoresolution lossless cod-
ing methods corresponding to the 512 � 512 \Lena"
image (initial entropy H0 = 7:4451).

Technique H r (bpp) Tc

JPEG #2 5.3774 5.4335 1.4724
JPEG #4 5.2726 5.3143 1.5054
JPEG #5 5.3198 5.3660 1.4909
JPEG #6 5.1530 5.2025 1.5377

JPEG #7 5.3483 5.4028 1.4807

Table 2: Performances of monoresolution lossless cod-
ing methods corresponding to the 256 � 256 \Boat"
image (initial entropy H0 = 7:5747).



Technique H H
�xed adaptive

(2; 4) 4.3779 4.3789
(2; 2) 4.3621 4.3666
(6; 2) 4.3295 4.3296
(2 + 2; 2) 4.3253 4.3290
(4; 2) 4.3191 4.3190
(4; 4) 4.3160 4.3166
S 4.7912 4.7912
S+P 4.3499 4.3496
NL 4.3220 4.3244
NL� 4.3012 4.3038

Table 3: Image \Lena", entropies of the 3-levels pyra-
mids. For NL and NL�, when the predictors are �xed,
they are obtained by the Neldear-Mead algorithm. For
the LMS algorithm, � = 5:10�5; � = 10�3. For NL�,
the lowest resolution approximation sub-image is coded
by a DPCM with a 3-th order optimal predictor.

Technique H H
�xed adaptive

(2; 4) 5.0069 5.0035
(2; 2) 4.9815 4.9839
(6; 2) 4.9252 4.9253
(2 + 2; 2) 4.9186 4.9210
(4; 2) 5.0875 4.9143
(4; 4) 4.9287 4.9166
S 5.4606 5.4606
S+P 4.9863 4.9870
NL 4.9005 4.9009
NL� 4.8910 4.8918

Table 4: Image \Boat", entropies of the 3-levels pyra-
mids. For NL and NL�, when the predictors are �xed,
they are obtained by the Neldear-Mead algorithm. For
the LMS algorithm, � = 5:10�5; � = 10�3. For NL�,
the lowest resolution approximation sub-image is coded
by a DPCM with a 3-th order optimal predictor.

Technique r (bpp) Tc

(2; 4) 5.6470 1.4167
(2; 2) 5.5471 1.4422
(6; 2) 5.4767 1.4608
(2 + 2; 2) 5.5948 1.4299
(4; 2) 5.4802 1.4598
(4; 4) 5.4939 1.4562
S 5.8407 1.3697
S+P 5.1433 1.5554
NL 5.4644 1.4645
NL� 5.4354 1.4718

Table 5: Image \Boat", bit rates and compression ra-
tios of the 3-levels pyramids. All the predictors are
�xed. For NL and NL�, the predictors are obtained by
the Neldear-Mead algorithm. For NL�, the lowest res-
olution approximation sub-image is coded by a DPCM
with a 3-th order optimal predictor.

Figure 2: Image \Boat" , (left) S+P transform, (right)
decomposition NL (optimized predictor), zoom of the
approximation sub-image at level j = 2.


