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ABSTRACT

The 2-D pyramidal image decomposition has been widely
used in various image processing applications [6]. In this
paper, we introduce filter bank implementations of a non-
linear multiresolution image representation based on local
contrast measure. Following the work of Duval-Destin [3,
1] for visual contrast sensitivity, we define multiscale con-
trast coefficients by scaling the wavelet transform with a lo-
calized mean luminance. We show that a pyramidal repre-
sentation is naturally associated with this new set of coeffi-
cients and study its properties. As an application, prelimi-
nary results of image coding experiments are discussed.

1. INTRODUCTION

Relying on common psycho-visual tests indicates that our
visual system is contrast sensitive, i.e. it reacts to the rela-
tive variations of the image intensity according to the cele-
brated Weber law1 :

C =
�L

L
:

On the other hand, the 2-D Continuous Wavelet Transform
(CWT) is by now a well established tool to detect and char-
acterize the absolute variations of the image intensity [2].
Using these basic definitions and properties, several authors
[1, 7] have proposed to define a local measure of contrast
by introducing an adaptive normalization of the CWT which
would take into account the local luminance around the pixel
of interest.

We will set up the contrast scaled version of the wavelet
pyramid in the following manner. Leth 2 L1(R2 )\L2(R2 )
be a real, positive valued function and be a square-inte-
grable 2-d wavelet. To avoid directional sensitivity,h and

1In fact there is no unique definition of contrast. Weber’s law, for ex-
ample, is commonly accepted when measuring the contrast with respect to
a somewhat uniform background, but other definitions can be found in the
literature [5].

the wavelet are taken isotropic. The intensity level of the
images around the position~b is defined as:

~Ms(a;~b) = khk�11
Z
R2

d2~x s(~x)~h
a;~b

(~x) ; (1)

where~h
a;~b

(~x) = a�2h(a�1(~x�~b)). In this expression, the

image and the normalization function are positive, so~Ms is
also positive and

Z
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d2~b ~Ms(a;~b) = ksk1:

As a result, ~Ms plays the role of a local mean ofs. The
ratio of the wavelet coefficient at scalea and position~b to
the mean intensity level yields the following function :

Cs(a;~b) =
h ~ 

a;~b
jsi

~Ms(a;~b)
: (2)

An important point is that,Cs(a;~b) is well defined for all
a 2 R

+
�

and~b 2 R
2 , if and only if the essential support

of the wavelet is included in the corresponding support of
the normalization functionh. With this condition and by
positivity of h ands,

~Ms(a;~b) = 0 ) Cs(a;~b) = 0:

In general, the positivity conditions can even be relaxed,
provided one controls the zeros of the denominator of
Cs(a;~b) in Eq. 2. This can be done by imposing analyticity
of ~Ms(a;~b) [3]. At this point,Cs(a;~b) is called the local
contrast of the images around~b at scalea [1]. It can be ob-
served thatCs takes its large values in regions of low lumi-
nance. Perception-wise, this means that the details in dark
areas are emphasized more than the details in the bright ar-
eas. This is essentially how the human visual system works,
as well. If the adaptation of the human eye pupil function



is not considered, which is the case when both bright and
dark regions exist in the same image, human visual system
is more sensitive to variations in the dark regions that those
in bright regions.

A nice simplification arises when the wavelet is taken
as a difference of two positive functions [4],

 (~x) = ��2h(��1~x)� h(~x) (0 < � < 1):

The function satisfies the admissibility condition of wave-
lets [1] if the first moment ofh vanishes at the origin. Tak-
ing the same function to compute the luminance, we have

Cs(a;~b) =
h ~ 

a;~b
jsi

h~h
a;~b
jsi =

h~h
a�;~b

jsi
h~h

a;~b
jsi � 1 (3)

In this way, the support condition imposed on the wavelet
turns into a constraint onh alone:

Supp
�
~h�

�
� Supp

�
~h1

�
;

which means that the support ofh is a star-shaped domain
around the origin. Notice that it is sufficient thath decays
radially forCs to be bounded.

Using this simple example, it is very easy to realize that
the contrast coefficients yield a complete representation of
the signal. In fact the reconstruction at a fixed resolution is
a simple scheme using difference wavelets and local con-
trast. Ifa0 is the finest resolution (scale), that is,~Ms(a0;~b)

is the original dataset, and~Ms(a;~b) is a low resolution ap-
proximation of the image witha0 = a�n ; � < 1, then we
have

~Ms(a�;~b) = ~Ms(a;~b) �
�
Cs(a;~b) + 1

�

~Ms(a�
2;~b) = ~Ms(a;~b) �

�
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�

�
�
Cs(a�;~b) + 1

�
:

By recursion, a multiplicative reconstruction formula is ob-
tained:

~Ms(a0�;~b) = ~Ms(a;~b)

n�1Y
i=0

�
Cs(a�

i;~b) + 1
�
: (4)

This means that the reconstruction is obtained by starting
from low resolution approximations and adding successive
details, exactly like in the wavelet case.

The main difference is that the overall decomposition /
reconstruction scheme is now a nonlinear operation in the
sense that every decomposition value is adaptatively nor-
malized, and the reconstruction operations require succes-
sive multiplications of theC functional where the regular
wavelet reconstruction procedure requires additions. In other

words, the regular wavelet synthesis works with a summa-
tion over the filtered approximation and detail signals, whereas,
with the introduction of a scaling with the mean luminance
values at each decomposition level, the local contrast wavelet
reconstruction procedure works with a multiplication over
the wavelet data.

2. PYRAMIDAL CONTRAST REPRESENTATIONS

Equation (4) shows us that contrast coefficients adopt a nat-
ural multiresolution structure allowing a coarse to grain rep-
resentation of images. This close link with wavelets can also
be exploited to design fast decomposition algorithm based
on filter banks.

2.1. Laplacian Pyramid Style

In order to obtain a useful and less redundant representa-
tion, the CWT formalism is carried to the Discrete Wavelet
Transform framework by introducing downsampling on the
low resolution approximation. The easiest way to achieve
this is to adapt the well known Laplacian Pyramid formal-
ism [6]. In this scheme, the imageI is first convolved
with a low pass filterK(i; j) and the result is downsampled
by a factor of 2, yielding a low resolution approximation
L1(i; j). In order to record the details lost in this opera-
tion we upsampleL1, interpolate withK and compute the
difference image :

D1(i; j) = I(i; j)� [L1 " 2] ? K(i; j) :

Contrast coefficients are then defined as

C1(i; j) =
D1(i; j)

[L1 " 2] ? K(i; j)
; (5)

which is obviously well defined when using a positive low
pass filterK. This decomposition is then iteratively applied
to the low resolution image yielding contrast coefficients
Ck ; 1 � k � N and a low resolution approximationLN .
An example of such a pyramid is displayed on Figure 2.
This representation is easily inverted. Indeed consider the
contrast coefficientsCk(i; j) and low resolutionLk(i; j).
Using (5) a finer approximation ofI can be computed as:

Lk�1(i; j) = ([Lk " 2] ? K(i; j))� fCk(i; j) + 1g : (6)

Applying this last equation iteratively as in Eq. 4 allows us
to reconstructI from its contrast coefficients.

2.2. QMF Pyramid Style

The next natural step is to address the problem of critically
sampling the contrast representation. Many of the applica-
tions require critically sampled wavelet representations to



Figure 1:Contrast pyramid of the test image.

Figure 2:Laplacian pyramid of the test image.

eliminate redundancy. In our case, this is done by adapting
the usual (bi-)orthogonal filterbank approach to wavelets.
Let us consider the general case in which we have a pair
of conjugate mirror filters(h; g) and their (bi-)orthogonal
counterparts(~h; ~g). At the analysis side, we use these fil-
ters to compute the usual three detail subbandsDh,Dv and
Dd and approximationL. We then define three oriented
contrast subbands by adaptatively normalizing the wavelet
coefficients withL :

C�(i; j) =
D�(i; j)

L(i; j)
; � = h; v; d : (7)

The pyramid is constructed by cascading this operation to
the low resolution approximationL. Let us now check that
these coefficients are well defined for suitable analysis pairs
(h; g). Let (�;  ) and (~�; ~ ) be the biorthogonal scaling
functions and wavelets associated to these filters and lets

be a positive definite square integrable function. Writing

�j;n(t) =
1p
2
�
�
2�jt� n

�

 j;n(t) =
1p
2
 
�
2�jt� n

�

we have to ensure that

C(j; n) =
h j;njsi
h�j;njsi

is bounded. Using the two scale equations relating� and ,
we have

C(j; n) =

P
k g

�

kh�j�1;2n+k jsiP
k0 h�k0h�j�1;2n+k0 jsi : (8)

By definition, the filter coefficients satisfy

gk = (�1)1�k~h1�k: (9)

If we select positive low pass coefficientshk, equations (8)
and (9), together with the non-negativity of the signal, give
a sufficient condition on the support ofh and~h :

Supp
�
~h
�
� Supp(h) :

Obviously, many (bi-)orthogonal pairs satisfying these re-
quirements can be found.

3. APPLICATION TO TRANSFORM CODING

The contrast normalized pyramids obtained for images are
found to have useful properties for image processing ap-
plications. Consider the pyramid image of the “trees” test
image obtained with the contrast normalization in Fig 1. It
is clear that the detail images tend to have smaller values
at higher scales, indicating that the increased number of de-
composition levels reduces the dynamic range of the trans-
form domain image. This property, which is not present in
the regular Laplacian pyramid (Fig 2), may find useful ap-
plications in terms of compression.

Another useful property of the pyramidal decomposition
is that the noise that can be added to the wavelet domain sig-
nals (during quantization) does not produce increased amount
of noise variance in the reconstructed image. In other words,
similar to the conventional pyramid case, the amount of
noise added to the transform domain signal produces bounded
and linearly proportional amount of noise in the reconstruc-
ted signal. This is important especially in the presence of
noise introduced (e.g. by quantization) in the highest level
(lowest detail). As an illustration, if the fourth level pyramid
image is quantized to 32 levels, it produces a MSE of 7.63 in
the reconstructed image, and if the third level pyramid im-
age is quantized to 32 levels, the reconstructed image has a
MSE of 7.64. Similar quantization of the first level produces
a MSE of 7.70 in the reconstruction image. This indicates
that the reconstruction error is linear with the quantization
noise throughout the entire decomposition stages.

For the QMF style decomposition, the coders for wavelet
trees have been extensively investigated [8, 9]. For this rea-
son, we skip the quantization performance comparisons of
contrast QMF with the regular QMF decomposition, and di-
rectly compare the coding performances with both objective
and subjective quality criteria.



Image name EZW PSNR C-EZW PSNR
Lena512 40.40 39.64

Baboon512 29.35 28.42
Peppers512 38.57 36.93
Barbara512 36.28 34.98

Boat 512 36.57 35.55
Goldhill 512 36.53 35.73
Parrot256 41.88 40.82

Table 1: Zerotree coding results at 1bpp

Consider the wavelet tree obtained by a contrast QMF
in Fig. 3. The zerotree coders [8, 9] exploits the similari-
ties along the different levels of decomposition correspond-
ing to the same location of the image. In order to make
the contrast pyramid compatible with the available coders,
which are developed for coding wavelet tree outputs of reg-
ular QMFs (see Fig. 4), we applied a correction scale factor
which is exponentially proportional to the level.

The test results in table 3 at 1 bits/pixel indicates very
comparable PSNR performance of the contrast QMF with
the original QMF. Furthermore, the images which have de-
tails at the dark areas give perceptually better reconstruc-
tion images at those portions. Better coders for the contrast
QMF could possibly be obtained by considering the prop-
erties of the contrast pyramid instead of the regular wavelet
pyramid. It has been demonstrated that, even with the tools
that are ready at hand, one can obtain useful results using
the new nonlinear contrast pyramid scheme. Investigation
of other applications that may exploit the special properties
of the contrast pyramid remains as an open direction.
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