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ABSTRACT wherel, and0, are ther x r identity and zero matrices re-
spectively, and the notatiaB* denotes the conjugate trans-

The lifting scheme s a flexible method of designing per- pose of the matrixB. Under suitable conditions, based on
fect reconstruction multiwavelet filter banks for signal and e pRMFBH, H, G, G, vector-valued functions

image processing. This paper is on the usage of the lifting

scheme in constructing such filter banks. It is shown that ®=(¢1,....00)7, ®=(d1,...,on)7,
the constructed filter banks can be implemented very effi-
ciently. Two algorithms on the design of multiwavelet filter T = (... 1/}T)T I = @1 JT)T

banks using the lifting scheme are proposed. One is for the
optimization of desirable properties based on the applica-can be obtained from the equations
tion concerned, and the other is for the reduction of compu-

tational complexity in implementation. Two examples are \/_Z h(k)®(2z —
provided to illustrate the main ideas of the paper. kEZ
=2 Z h(k 2;1; -
1. INTRODUCTION heZ
— V2> g(k)B (20 -
Let kEZ

=> h(k)z*

kEZ
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keZ

kEZ
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kEZ

The functions® and ® are calledscaling vectors and ¥

and¥ are calledmultiwavelets.

kEZ The theory of multiwavelets is a recent topic of active
research, and application of multiwavelets to signal and im-
age processing is gaining interest as well (see, for instance,
[4]). The PRMFBH, H, G, G plays a central role in ap-
plying multiwavelets to practical situations. Indeed, given
ar x 1 vector signalc!(k)}, decompose it into twe x 1

be FIRr xr matrix filters with real matrix coefficients. Then
H,H,G,G are said to form perfect reconstruction mul-
tiwavelet filter bank (PRMFB) if

H(z)fi(z)* + H(=2)H(=2)" =2, vector signalgc®(k)} and{d°(k)} by

H(z)G(z)*+ H(— z)G( z)* =0, 1) _ )

G()H ()" + G(=2)H(~2)* =0,, = %h(n — 2k)c* (n),

G)G(=)" + G(=2)G(=2)" =20, [o] =1, O(k) =) g(n —2k)c'(n). @)
nz;zg
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decomposed signafs® (k)} and{d°(k)} by As shown in [3], if HD, gD, gU=1D GE=1
form a PRMFB, thenH®), HO GO, G also form a

(k) =" (h(k = 2n)Tc"(n) + g(k — 2n)"d"(n)) . PRMFB. SinceH®, H©®), G©, G form a PRMFB,
nez it follows that H), H® G©, G® form a PRMFB for
3) 0 < ¢ < L. In particular, at the final step, we obtain a
. PRMFB
The formulas (2) and (3) are known as tthecomposition
and reconstruction multiwavelet algorithms. The prop- H=HDY, H=H®, G¢=a¢", G=G".
erty (1) ensures perfect reconstruction of the original signal
{c!(k)} from {c(k)} and{d"(k)}. In this construction, flexibility is provided by the FIR matrix

In practice, one needs PRMFBE H, G, G with desir-  filters S, 50 79 178 for1 << L.
able properties to facilitate processing and analysis. Itisa  The lifting scheme provides a strategy for constructing
challenging problem to construct FIR matrix filteks H, ~ PRMFBs that optimize certain desirable properties. The
G, G that satisfy (1). The task is even more difficult when onuies of the FIR matrix filters®, SO Tl(l)! Tz(z) for
certain properties, depending on the practical setting con-; ~ ; « 1 are Laurent polynomials ia whose coefficients
cerned, need to be factored into the matrix filters. Extending .o pe viewed as parameters to be selected. Thus each lift-
the results in [1]_, [_2], [5] on the lifting s_cheme fo_r the scalar ing step provides many free parameters which can be used
caser = 1, the lifting scheme for multiwavelet filter banks "5 ot the resulting PRMFB to the problem concerned. In
was introduced in [3] to provide a flexible platform for de- 5 fice, some of these parameters are used to satisfy cer-
signing desirable PRMFBs. The objective of this paper is (51 pasic properties of the matrix filteF&, H, G, Gi. These

to highlight the usage of the lifting scheme for constructing properties include symmetry and antisymmetry of the ma-
good PRMFBs, and to demonstrate how such PRMFBs leadyjy fiiters. The rest of the parameters are used to optimize
to reduction of computational complexity in the implemen- ¢ ain desirable properties such as time-frequency localiza-
tation of the multiwavelet algorithms (2) and (3). tion of the resulting scaling vectors and multiwavelets, and
the performance in image compression on a class of training
2. THE LIFTING SCHEME FOR MULTIWAVELET images.
FILTER BANKS The above strategy can be formulated as an algorithm

for the design of PRMFBs.
We shall now review some of the recent results on the lifting

scheme established in [3]. L&, H(, G©®, G bea  Algorithm 1

known PRMFB. A popular example is given by thezy B

matrix filters Step 1: Use some of the free parameterssiff), S, 79,
T2("7) for 1 < ¢ < L to ensure that the resulting

(0) — g — (0) _ (0) -1
H7(z)=H"(2)=1,, G7(2)=G"(2)=2""1I. PRMFB satisfies certain basic properties.

(4)
- Step 2: Based on desirable properties, identify an object
Forl é)f <L, !%ts(’f) andS be FIRr x r matrix filters, function F in terms of the remaining parameters
andT}” andT,”’ be FIRr x r upper or lower triangular inS®, 50O, Tl(ff)' TZ)(Z) for1 < (< L.

matrix filters whose diagonal entries are entirgly Define
© Step 3: Search for the values of the free parameters in Step
{H(Z)(z) =T (%) (H " (2) + SO (2*)G ) (2)), 2 that optimize the object functigh.

GO (z) = T{" ()G Y (2) = 8O (2 H O (2),
(5) 3. EFFICIENT IMPLEMENTATION OF

q MULTIWAVELET ALGORITHMS
an

In this section, we shall show that PRMFBs constructed us-

~(0) () 2yk\—1
G(2) =(17(27)7) ing the lifting scheme can be implemented efficiently. To

((;(t’fl)(z) — 5(5)(22)*13(571)(2)) , simplify the discussion, fot < ¢ < L, let the matrix filters
~ 0, : - o Tl(f) andTél) be the identity matriX,.. Then the equations
HO(z):=(Ty"7(z*)") T H D (2) + 59 (2*)G O (2), in (6) reduces to

(6)

G (z) =GV (z) = SO H(z),

- - - - 7
HO(2) = HV(2) + SO (21)GO(2), ")

for |z] = 1. The process described by (5) and (6) is called
thelifting scheme



for |z| = 1, which is equivalent to

FOk) = )= 3 8O TRV (& + 20),
neZ
RO (k) = bV (k) + )59 (n)g O (k — 2n),
neEZ
(8)
where
S(l Zs(l k’ (£) Z) — ng(l)(k)z k
kEZ keZ

Now, based on a given vector sigral ()}, set

=" hO(n - 2k)c! (n),

nEZNO 1 (9)
)= 5 (n = 2k)c! (n).

nez

Forl </ < L, define

dO,(l)(k_) — dO,(lfl)(k) _ Z S(l)(k_ TCO,(Zfl)(n)’
neL
OO (k) = ¢ Z%Z) k)d®© (n).
nez
(10)

Then a straightforward application of (8) shows that if

O =D(E) = 3R (n - 2k)et (n),
nez

dO(Z 1) Zglln_Qk_ ()
nez

then

(k) =Y " 1O (n - 2k)c (n),

neEZ

> 79

neZ

O (k) = — 2k)ct (n).

SinceH = HX) andG = G, it follows thatc®(k) =
AWD)(k) andd®(k) = d>L)(k), where{c®)(k)} and

{d*(")(k)} are given by (10). Thus the decomposition al-
gorithm (2) can be expressed as a recursive application of
(10). We shall call (10) thdifted decomposition algo-

rithm .
N

Z a(k)z~*, with
k=M
) # 0,., we define thesup-

For a FIRr x r matrix filter A(z) =

M < N, a(M) # 0, anda(N
port andlength of A as

supp(4) :={M,... ,N}, |A|:=N-M+1

respectively. Assume that far< ¢ < L, S andS® are
chosen such that

supp(G¥) = supp(SY),  supp(H")) = supp(SY)),
(11)

wheresg) andgg) are FIRr x r matrix filters defined by

S = SO A,
552 = 80 0(),

for |z| = 1. Then|G®| = |H!=1| 4+ 2|S®)| — 2 and

|HO| = [HED] 42150 + |SO]) —4for1 << L.

Consequently, the final matrix filte's = G andH =
H) have lengths

L
N+2> (159 +15) - 21SH)| — 4L + 2,

|G| =|H®
(=1
L
[H| = |HO|+2) (15O +]51)) - 4L,

(=1

Let m be the computational effort of left multiplying a
r x r matrix to ar x 1 vector, andz be that of adding two
r x 1 vectors. Suppose that the decomposition algorithm
(2) is used to compute the decomposed sign#ls) and
d°(k) at a valuek. Then the computational effort required
for evaluating® (k k)is |H|m+ (|H|—1)a, and that forl° (k)
is |G|m + (|G| — 1)a. Hence, the total computational effort
required is given by

L
= (U +4Y(S]+ |5)) - 25
(=1
— 8L +2)(m + a) — 2a.

(12)

On the other hand, if the lifted decomposition algorithm
(10) is used to find"(k) andd®(k), then in thefth step,
the computational effort required fdf-(9) (k) is |S(©)|(m +
a) and that forc®() (k) is |S®|(m + a). In addition, the
computational effort for evaluating-(®) (k) andd®(© (k)
in (9) is (|H®| + |G©])(m + a) — 2a. Thus the total
computational effort needed to firfl(k) andd® (k) is

L
(O] + |G+ 32159 + 159D m + a)
=1
— 2a.
(13)

L
In general3 } (|| + [S“)]) is significantly larger than
=1
2|S()| 4 8L. Thus it follows from (12) and (13) tha®



is much smaller thad. We have just proved the following
theorem.

Theorem 1 Suppose that fot < ¢ < L, S and S(¥) are

FIR r x r matrix filters satisfying11). Then the compu-

tational efforts for the decomposition algorith{2) and the

lifted decomposition algorithriL0) are given by(12) and
L

(13) respectively. Furthermore, > (S| +(51“)) is

(=1
much larger thar2|S%)| + 8L, then the lifted decomposi-
tion algorithm reduces the computational complexity of the
decomposition algorithm significantly.

A natural question one would ask is how can the matrix
filters S and S(), 1 < ¢ < L, be chosen so that (11)
holds? In this connection, let supg¥)) = {M,,... , N},
supp(S9) = {My, ..., N}, supp(GD) = {Ps, ... ,Q¢}
and supgH()) = {J;,..., K,}. Then (11) is equivalent
to

Pr=Ji—1— 2Ny, Q= Kp1—2M,y,
Jo=Jy_1 —2(Ne — My), K;=Ko_1 +2(Ny — My).
(14)
Suppose that/;, Ny, M;, N; are integers satisfying
My < (Ko —Qo)/2, Ni>(Jo—Fo)/2,
M, <Ny N> M.
Then straightforward calculations show that
Jo—2N1 < Py, Qo< Ky—2My,

which, together with (7), yield the first two equations in (14)

for / = 1. Consequently,
P1—|-2M1 <J0, Ky <Q1+2N1,

and we have the other twgequations in (14)fex 1.
Forf > 2, let My, Ny, M,;, N, be integers satisfying

My < Ney, Ne>DM; oy,
M, < N;, No> M,.
Assuming (14) for thé/ — 1)th step, we have
Jo1 2N <Py, Qo1 <Ky 1 —2M,,

which give the first two equations in (14) for tifth step.
Thus

Ko < Qe+ 2Ny,

and so the other two equations in (14) also hold fordie
step.

By induction or¥, we obtain the following algorithm for
ensuring the condition (11) far < ¢ < L. (The notation
#(F) denotes the number of elements in thelSgt

Py + 2]\2@ < Jp_1,

Algorithm 2 Suppose thasupp(G(?)) = {PR,...,Qo}
andsupp(H®) = {J,... , Ky}. The following steps en-
sure that(11) holds forl < ¢ < L.
Step 1: Choose firstV; and N, such that

My < (Ko —Qo)/2, Ni>(Jo—Po)/2,
and then)M; and N; such that

#({Ml, ,Nl}ﬂ{Ml,... ,Nl}) > 1.

Step 2: For 2 </ < L, choose first\/, and NV, such that
#({My, ... NI {M¢_1,... ,Ne_1}) > 1,
and then), and N, such that

#({Ml, ,Nz}ﬂ {M[,... ,Ng}) > 1.

For1 < ¢ < L, defineS® andS® to be FIRr x
r matrix filters withsupp(S\©) = {My, ..., N¢}
andsupp(S¥) = {My, ..., N;}.

Step 3:

Example 1 Let H(©, H©), G, G be the lazy matrix
filters (4). Consider the case whgi?)| = [S()] = X\ > 2
and (11) holds fod < ¢ < L. ThenC andD in (12) and
(13) reduces to

C=(BAL—-2X\—-8L+4)(m+a)—2a

and
D =2\L(m + a).

The above expression f@ is slightly smaller than that in
(13) because in this casH,? andG(® are the lazy matrix
filters, and thus (9) involves no multiplications and addi-
tions.

We shall compare the number of left multiplication of
r X r matrices ta- x 1 vectors. Let,, andD,, be the num-
ber of such multiplications i€ andD respectively. Then
Cmn = 8AL — 2\ — 8L + 4 andD,,, = 2)\L. Table 1 shows
the reduction in computational complexity for all possible
pairs of matrix filtersH andG, whose filter length is less
than20, that can be constructed under this setting. The per-
centage reduction in computational effort

Cm _Dm

(15)
for each pair of matrix filters is also computed. As can be
seen from Table 1, the reduction in computational complex-
ity for all these pairs of matrix filters is at lea®%. O



Example 2 Assume the setting of Example 1 excé$t?|
and|S(9)| are allowed to vary for different values 6f Let
H = H® andG = GM). Fixing the total lengthH | +|G],
we seek the values, ||, [SM|, ..., |S(E)|, |ST)],
where S| > 2 and|S®¥| > 2for1 < ¢ < L, that
maximize the percentage reduction in computational effort
rin (15). In this way, for a fixed value dff| + |G|, an
optimal structure off andd via lifting that gives the most
efficientimplementation of the multiwavelet algorithms can
be obtained. Based on this optimal structure for implemen-
tation, one can apply Algorithm 1 to the free parameters in TABLE 1. Reduction in computational complexity.
S0 andS® for 1 < ¢ < L to optimize the object function
identified for the problem concerned.

As an illustration, considgif | + |G| = 24. It turns out scheme can be implemented very efficiently in practice with
thatZ = 1, S| = 6, |S(V| = 2 give the optimal structure ~ Much reduction in computational complexity. N
for implementation. In this cas¢:H| — 13 and|§| - 11 The paper [3] cpntgms pther apphcguons of the lifting
The corresponding reduction in computational complexity scheme. The applications include multiwavelet transforms

is 67%. Note that this is higher than tH8% stated in Table that map integers to integers, construction of multiwavelets
1, whereL = 3and|S)| = |SO| =2for¢=1,2,3. O with optimum time-frequency localization, and image com-

pression based on these optimal multiwavelets.
The steps in the lifted decomposition algorithm (10) are

|G| | |H| | Cr | D T

3 ) 8 4 | 50%
7 9 16 8 | 50%
11 | 13 | 24 | 12 | 50%
15 | 17 | 32 | 16 | 50%
5 9 14 6 | 57%
13 | 17 | 30 | 12 | 60%
7 13 | 20 8 | 60%
9 17 | 26 | 10 | 62%
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easily reversible. Indeed, based on the decomposed vector 5. REFERENCES
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complexity of the reconstruction algorithm (3). [5] W. Sweldens, The lifting scheme: a custom-design
As a final note, although we assume tﬂi‘é@ — T2(f) — construction of biorthogonal wavele#ppl. Comput.

I, and S and S(® satisfy (11) throughout this section, Harmon. Anal3 (1996), 186-200.
similar analysis can be used to establish the reduction in
computational complexity for more general situations.

4. CONCLUSION

We have reviewed some of the results on the lifting scheme
for the design of multiwavelet filter banks established in [3].
We have highlighted how the lifting scheme can be used to
construct optimal PRMFBs for a specific application. We
have also shown that PRMFBs obtained from the lifting



