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ABSTRACT

The lifting scheme is a flexible method of designing per-
fect reconstruction multiwavelet filter banks for signal and
image processing. This paper is on the usage of the lifting
scheme in constructing such filter banks. It is shown that
the constructed filter banks can be implemented very effi-
ciently. Two algorithms on the design of multiwavelet filter
banks using the lifting scheme are proposed. One is for the
optimization of desirable properties based on the applica-
tion concerned, and the other is for the reduction of compu-
tational complexity in implementation. Two examples are
provided to illustrate the main ideas of the paper.

1. INTRODUCTION

Let

H(z) :=
X
k2Z

h(k)z�k; eH(z) :=
X
k2Z

eh(k)z�k;
G(z) :=

X
k2Z

g(k)z�k; eG(z) :=X
k2Z

eg(k)z�k
be FIRr�rmatrix filters with real matrix coefficients. Then
H , eH ,G, eG are said to form aperfect reconstruction mul-
tiwavelet filter bank (PRMFB) if8>>>>><>>>>>:

H(z) eH(z)� +H(�z) eH(�z)� = 2Ir;

H(z) eG(z)� +H(�z) eG(�z)� = 0r;

G(z) eH(z)� +G(�z) eH(�z)� = 0r;

G(z) eG(z)� +G(�z) eG(�z)� = 2Ir; jzj = 1;

(1)
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whereIr and0r are ther � r identity and zero matrices re-
spectively, and the notationB� denotes the conjugate trans-
pose of the matrixB. Under suitable conditions, based on
the PRMFBH , eH,G, eG, vector-valued functions

� = (�1; : : : ; �r)
T ; e� = (e�1; : : : ; e�r)T ;

	 = ( 1; : : : ;  r)
T ; e	 = ( e 1; : : : ; e r)T

can be obtained from the equations

�(x) =
p
2
X
k2Z

h(k)�(2x� k);

e�(x) = p
2
X
k2Z

eh(k)e�(2x� k);

	(x) =
p
2
X
k2Z

g(k)�(2x� k);

e	(x) = p
2
X
k2Z

eg(k)e�(2x� k):

The functions� and e� are calledscaling vectors, and	
ande	 are calledmultiwavelets.

The theory of multiwavelets is a recent topic of active
research, and application of multiwavelets to signal and im-
age processing is gaining interest as well (see, for instance,
[4]). The PRMFBH , eH , G, eG plays a central role in ap-
plying multiwavelets to practical situations. Indeed, given
a r � 1 vector signalfc1(k)g, decompose it into twor � 1
vector signalsfc0(k)g andfd0(k)g by8>><>>:

c0(k) =
X
n2Z

eh(n� 2k)c1(n);

d0(k) =
X
n2Z

eg(n� 2k)c1(n):
(2)

(The notationBT denotes the transpose of the matrixB.)
The original signalfc1(k)g can be reconstructed from the



decomposed signalsfc0(k)g andfd0(k)g by

c1(k) =
X
n2Z

�
h(k � 2n)T c0(n) + g(k � 2n)T d0(n)

�
:

(3)

The formulas (2) and (3) are known as thedecomposition
and reconstruction multiwavelet algorithms. The prop-
erty (1) ensures perfect reconstruction of the original signal
fc1(k)g from fc0(k)g andfd0(k)g.

In practice, one needs PRMFBsH , eH ,G, eG with desir-
able properties to facilitate processing and analysis. It is a
challenging problem to construct FIR matrix filtersH , eH ,
G, eG that satisfy (1). The task is even more difficult when
certain properties, depending on the practical setting con-
cerned, need to be factored into the matrix filters. Extending
the results in [1], [2], [5] on the lifting scheme for the scalar
caser = 1, the lifting scheme for multiwavelet filter banks
was introduced in [3] to provide a flexible platform for de-
signing desirable PRMFBs. The objective of this paper is
to highlight the usage of the lifting scheme for constructing
good PRMFBs, and to demonstrate how such PRMFBs lead
to reduction of computational complexity in the implemen-
tation of the multiwavelet algorithms (2) and (3).

2. THE LIFTING SCHEME FOR MULTIWAVELET
FILTER BANKS

We shall now review some of the recent results on the lifting
scheme established in [3]. LetH(0), eH(0), G(0), eG(0) be a
known PRMFB. A popular example is given by thelazy
matrix filters

H(0)(z) = eH(0)(z) = Ir ; G(0)(z) = eG(0)(z) = z�1Ir:
(4)

For1 � ` � L, letS(`) andeS(`) be FIRr� r matrix filters,
andT (`)

1 andT (`)
2 be FIRr � r upper or lower triangular

matrix filters whose diagonal entries are entirely1’s. Define(
H(`)(z) := T

(`)
1 (z2)

�
H(`�1)(z) + S(`)(z2)G(`�1)(z)

�
;

G(`)(z) := T
(`)
2 (z2)G(`�1)(z)� eS(`)(z2)�H(`)(z);

(5)

and8>>><>>>:
eG(`)(z) :=(T

(`)
2 (z2)�)�1� eG(`�1)(z)� S(`)(z2)� eH(`�1)(z)

�
;eH(`)(z) :=(T

(`)
1 (z2)�)�1 eH(`�1)(z) + eS(`)(z2) eG(`)(z);

(6)

for jzj = 1. The process described by (5) and (6) is called
the lifting scheme.

As shown in [3], ifH(`�1), eH(`�1), G(`�1), eG(`�1)

form a PRMFB, thenH(`), eH(`), G(`), eG(`) also form a
PRMFB. SinceH(0), eH(0), G(0), eG(0) form a PRMFB,
it follows thatH(`), eH(`), G(`), eG(`) form a PRMFB for
0 � ` � L. In particular, at the final stepL, we obtain a
PRMFB

H = H(L); eH = eH(L); G = G(L); eG = eG(L):

In this construction, flexibility is provided by the FIR matrix
filtersS(`), eS(`), T (`)

1 , T (`)
2 for 1 � ` � L.

The lifting scheme provides a strategy for constructing
PRMFBs that optimize certain desirable properties. The
entries of the FIR matrix filtersS(`), eS(`), T (`)

1 , T (`)
2 for

1 � ` � L are Laurent polynomials inz whose coefficients
can be viewed as parameters to be selected. Thus each lift-
ing step provides many free parameters which can be used
to adapt the resulting PRMFB to the problem concerned. In
practice, some of these parameters are used to satisfy cer-
tain basic properties of the matrix filtersH , eH ,G, eG. These
properties include symmetry and antisymmetry of the ma-
trix filters. The rest of the parameters are used to optimize
certain desirable properties such as time-frequency localiza-
tion of the resulting scaling vectors and multiwavelets, and
the performance in image compression on a class of training
images.

The above strategy can be formulated as an algorithm
for the design of PRMFBs.

Algorithm 1

Step 1: Use some of the free parameters inS(`), eS(`), T (`)
1 ,

T
(`)
2 for 1 � ` � L to ensure that the resulting

PRMFB satisfies certain basic properties.

Step 2: Based on desirable properties, identify an object
functionF in terms of the remaining parameters
in S(`), eS(`), T (`)

1 , T (`)
2 for 1 � ` � L.

Step 3: Search for the values of the free parameters in Step
2 that optimize the object functionF .

3. EFFICIENT IMPLEMENTATION OF
MULTIWAVELET ALGORITHMS

In this section, we shall show that PRMFBs constructed us-
ing the lifting scheme can be implemented efficiently. To
simplify the discussion, for1 � ` � L, let the matrix filters
T
(`)
1 andT (`)

2 be the identity matrixIr. Then the equations
in (6) reduces to( eG(`)(z) = eG(`�1)(z)� S(`)(z2)� eH(`�1)(z);eH(`)(z) = eH(`�1)(z) + eS(`)(z2) eG(`)(z);

(7)



for jzj = 1, which is equivalent to8>><>>:
eg(`)(k) = eg(`�1)(k)�X

n2Z

s(`)(n)Teh(`�1)(k + 2n);

eh(`)(k) = eh(`�1)(k) +X
n2Z

es(`)(n)eg(`)(k � 2n);

(8)

where

S(`)(z) =
X
k2Z

s(`)(k)z�k; eS(`)(z) =
X
k2Z

es(`)(k)z�k:
Now, based on a given vector signalfc1(k)g, set8>><>>:

c0;(0)(k) :=
X
n2Z

eh(0)(n� 2k)c1(n);

d0;(0)(k) :=
X
n2Z

eg(0)(n� 2k)c1(n):
(9)

For1 � ` � L, define8>><>>:
d0;(`)(k) := d0;(`�1)(k)�

X
n2Z

s(`)(k � n)T c0;(`�1)(n);

c0;(`)(k) := c0;(`�1)(k) +
X
n2Z

es(`)(n� k)d0;(`)(n):

(10)

Then a straightforward application of (8) shows that if8>><>>:
c0;(`�1)(k) =

X
n2Z

eh(`�1)(n� 2k)c1(n);

d0;(`�1)(k) =
X
n2Z

eg(`�1)(n� 2k)c1(n);

then 8>><>>:
c0;(`)(k) =

X
n2Z

eh(`)(n� 2k)c1(n);

d0;(`)(k) =
X
n2Z

eg(`)(n� 2k)c1(n):

Since eH = eH(L) and eG = eG(L), it follows thatc0(k) =
c0;(L)(k) and d0(k) = d0;(L)(k), wherefc0;(L)(k)g and
fd0;(L)(k)g are given by (10). Thus the decomposition al-
gorithm (2) can be expressed as a recursive application of
(10). We shall call (10) thelifted decomposition algo-
rithm .

For a FIRr�r matrix filterA(z) =
NX

k=M

a(k)z�k, with

M � N , a(M) 6= 0r anda(N) 6= 0r, we define thesup-
port andlength of A as

supp(A) := fM; : : : ; Ng; jAj := N �M + 1

respectively. Assume that for1 � ` � L, S(`) and eS(`) are
chosen such that

supp( eG(`)) = supp(S(`)
eH
); supp( eH(`)) = supp(eS(`)

eG
);

(11)

whereS(`)
eH

and eS(`)
eG

are FIRr � r matrix filters defined by

S
(`)
eH
(z) := S(`)(z2)� eH(`�1)(z);eS(`)

eG
(z) := eS(`)(z2) eG(`)(z);

for jzj = 1. Then j eG(`)j = j eH(`�1)j + 2jS(`)j � 2 and
j eH(`)j = j eH(`�1)j+ 2(jS(`)j + jeS(`)j) � 4 for 1 � ` � L.
Consequently, the final matrix filterseG = eG(L) and eH =eH(L) have lengths

j eGj = j eH(0)j+ 2

LX
`=1

(jS(`)j+ jeS(`)j)� 2jeS(L)j � 4L+ 2;

j eH j = j eH(0)j+ 2

LX
`=1

(jS(`)j+ jeS(`)j)� 4L:

Letm be the computational effort of left multiplying a
r � r matrix to ar � 1 vector, anda be that of adding two
r � 1 vectors. Suppose that the decomposition algorithm
(2) is used to compute the decomposed signalsc0(k) and
d0(k) at a valuek. Then the computational effort required
for evaluatingc0(k) is j eH jm+(j eH j�1)a, and that ford0(k)
is j eGjm+(j eGj � 1)a. Hence, the total computational effort
required is given by

C =�2j eH(0)j+ 4

LX
`=1

(jS(`)j+ jeS(`)j)� 2jeS(L)j

� 8L+ 2
�
(m+ a)� 2a:

(12)

On the other hand, if the lifted decomposition algorithm
(10) is used to findc0(k) andd0(k), then in the`th step,
the computational effort required ford0;(`)(k) is jS(`)j(m+

a) and that forc0;(`)(k) is jeS(`)j(m + a). In addition, the
computational effort for evaluatingc0;(0)(k) andd0;(0)(k)
in (9) is (j eH(0)j + j eG(0)j)(m + a) � 2a. Thus the total
computational effort needed to findc0(k) andd0(k) is

D =
�j eH(0)j+ j eG(0)j+

LX
`=1

(jS(`)j+ jeS(`)j)�(m+ a)

� 2a:

(13)

In general,3
LX
`=1

(jS(`)j+ jeS(`)j) is significantly larger than

2jS(L)j + 8L. Thus it follows from (12) and (13) thatD



is much smaller thanC. We have just proved the following
theorem.

Theorem 1 Suppose that for1 � ` � L, S(`) and eS(`) are
FIR r � r matrix filters satisfying(11). Then the compu-
tational efforts for the decomposition algorithm(2) and the
lifted decomposition algorithm(10) are given by(12) and

(13) respectively. Furthermore, if3
LX
`=1

(jS(`)j+ jeS(`)j) is

much larger than2jS(L)j + 8L, then the lifted decomposi-
tion algorithm reduces the computational complexity of the
decomposition algorithm significantly.

A natural question one would ask is how can the matrix
filters S(`) and eS(`), 1 � ` � L, be chosen so that (11)
holds? In this connection, let supp(S(`)) = fM`; : : : ; N`g,
supp(eS(`)) = ffM`; : : : ; eN`g, supp( eG(`)) = fP`; : : : ; Q`g
and supp( eH(`)) = fJ`; : : : ;K`g. Then (11) is equivalent
to

P` = J`�1 � 2N`; Q` = K`�1 � 2M`;

J` = J`�1 � 2(N` � fM`); K` = K`�1 + 2( eN` �M`):

(14)

Suppose thatM1,N1, fM1, eN1 are integers satisfying

M1 < (K0 �Q0)=2; N1 > (J0 � P0)=2;fM1 < N1
eN1 > M1:

Then straightforward calculations show that

J0 � 2N1 < P0; Q0 < K0 � 2M1;

which, together with (7), yield the first two equations in (14)
for ` = 1. Consequently,

P1 + 2fM1 < J0; K0 < Q1 + 2 eN1;

and we have the other two equations in (14) for` = 1.
For` � 2, letM`,N`, fM`, eN` be integers satisfying

M` < eN`�1; N` > fM`�1;fM` < N`; eN` > M`:

Assuming (14) for the(`� 1)th step, we have

J`�1 � 2N` < P`�1; Q`�1 < K`�1 � 2M`;

which give the first two equations in (14) for the`th step.
Thus

P` + 2fM` < J`�1; K`�1 < Q` + 2 eN`;
and so the other two equations in (14) also hold for the`th
step.

By induction oǹ , we obtain the following algorithm for
ensuring the condition (11) for1 � ` � L. (The notation
#(E) denotes the number of elements in the setE.)

Algorithm 2 Suppose thatsupp( eG(0)) = fP0; : : : ; Q0g
andsupp( eH(0)) = fJ0; : : : ;K0g. The following steps en-
sure that(11)holds for1 � ` � L.

Step 1: Choose firstM1 andN1 such that

M1 < (K0 �Q0)=2; N1 > (J0 � P0)=2;

and thenfM1 and eN1 such that

#(ffM1; : : : ; eN1g \ fM1; : : : ; N1g) > 1:

Step 2: For 2 � ` � L, choose firstM` andN` such that

#(fM`; : : : ; N`g \ ffM`�1; : : : ; eN`�1g) > 1;

and thenfM` and eN` such that

#(ffM`; : : : ; eN`g \ fM`; : : : ; N`g) > 1:

Step 3: For 1 � ` � L, defineS(`) and eS(`) to be FIRr �
r matrix filters withsupp(S(`)) = fM`; : : : ; N`g
andsupp(eS(`)) = ffM`; : : : ; eN`g.

Example 1 Let H(0), eH(0), G(0), eG(0) be the lazy matrix
filters (4). Consider the case whenjS(`)j = jeS(`)j = � � 2
and (11) holds for1 � ` � L. ThenC andD in (12) and
(13) reduces to

C = (8�L� 2�� 8L+ 4)(m+ a)� 2a

and
D = 2�L(m+ a):

The above expression forD is slightly smaller than that in
(13) because in this case,eH(0) and eG(0) are the lazy matrix
filters, and thus (9) involves no multiplications and addi-
tions.

We shall compare the number of left multiplication of
r�r matrices tor�1 vectors. LetCm andDm be the num-
ber of such multiplications inC andD respectively. Then
Cm = 8�L� 2�� 8L+ 4 andDm = 2�L. Table 1 shows
the reduction in computational complexity for all possible
pairs of matrix filterseH and eG, whose filter length is less
than20, that can be constructed under this setting. The per-
centage reduction in computational effort

r :=
Cm �Dm

Cm � 100% (15)

for each pair of matrix filters is also computed. As can be
seen from Table 1, the reduction in computational complex-
ity for all these pairs of matrix filters is at least50%. �



Example 2 Assume the setting of Example 1 exceptjS(`)j
andjeS(`)j are allowed to vary for different values of`. LeteH = eH(L) and eG = eG(L). Fixing the total lengthj eH j+j eGj,
we seek the valuesL, jS(1)j, jeS(1)j, : : : , jS(L)j, jeS(L)j,
where jS(`)j � 2 and jeS(`)j � 2 for 1 � ` � L, that
maximize the percentage reduction in computational effort
r in (15). In this way, for a fixed value ofj eH j + j eGj, an
optimal structure ofeH and eG via lifting that gives the most
efficient implementation of the multiwavelet algorithms can
be obtained. Based on this optimal structure for implemen-
tation, one can apply Algorithm 1 to the free parameters in
S(`) and eS(`) for 1 � ` � L to optimize the object function
identified for the problem concerned.

As an illustration, considerj eH j+ j eGj = 24. It turns out
thatL = 1, jS(1)j = 6, jeS(1)j = 2 give the optimal structure
for implementation. In this case,j eH j = 13 andj eGj = 11.
The corresponding reduction in computational complexity
is 67%. Note that this is higher than the50% stated in Table
1, whereL = 3 andjS(`)j = jeS(`)j = 2 for ` = 1; 2; 3. �

The steps in the lifted decomposition algorithm (10) are
easily reversible. Indeed, based on the decomposed vector
signalsfc0(k)g andfd0(k)g, set c0;(L)(k) := c0(k) and
d0;(L)(k) := d0(k). ForL � ` � 1, define8>><>>:
c0;(`�1)(k) := c0;(`)(k)�

X
n2Z

es(`)(n� k)d0;(`)(n);

d0;(`�1)(k) := d0;(`)(k) +
X
n2Z

s(`)(k � n)T c0;(`�1)(n):

(16)

Then it follows that

c1(k) =
X
n2Z

�
h(0)(k � 2n)T c0;(0)(n) +

g(0)(k � 2n)T d0;(0)(n)
�
:

We shall call (16) thelifted reconstruction algorithm . Us-
ing similar arguments as before, one can also show that the
lifted reconstruction algorithm reduces the computational
complexity of the reconstruction algorithm (3).

As a final note, although we assume thatT
(`)
1 = T

(`)
2 =

Ir, andS(`) and eS(`) satisfy (11) throughout this section,
similar analysis can be used to establish the reduction in
computational complexity for more general situations.

4. CONCLUSION

We have reviewed some of the results on the lifting scheme
for the design of multiwavelet filter banks established in [3].
We have highlighted how the lifting scheme can be used to
construct optimal PRMFBs for a specific application. We
have also shown that PRMFBs obtained from the lifting

� L j eGj j eH j Cm Dm r
2 1 3 5 8 4 50%
2 2 7 9 16 8 50%
2 3 11 13 24 12 50%
2 4 15 17 32 16 50%
3 1 5 9 14 6 57%
3 2 13 17 30 12 60%
4 1 7 13 20 8 60%
5 1 9 17 26 10 62%

TABLE 1. Reduction in computational complexity.

scheme can be implemented very efficiently in practice with
much reduction in computational complexity.

The paper [3] contains other applications of the lifting
scheme. The applications include multiwavelet transforms
that map integers to integers, construction of multiwavelets
with optimum time-frequency localization, and image com-
pression based on these optimal multiwavelets.
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