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ABSTRACT 2. THE FILTER CLASS Pk

Nonrecursive digital filters are popular because they are in-The classPx consists of the FIR filters of the form (1) that
herently stable, unlike their recursive counterparts, and havegre symmetric with respect to all of the argumenys ; in
been shown to be effective in a wide variety of situations. the data windoww;. Note that this class includes dl-

For example, Astola and Kuosmanen descr2bediffer- filters with constant weightéuw; }:

ent classes of nonrecursive filters [2], many of which are

included in the general class of nonlinear smoothing fil- K

ters considered by Mallows [11]. This paper defines three Yr = Z Wi (i) (2)
classes of nonrecursive filters based on symmetry restric- ==K

tions and explores some of the consequences of these rewherexz;, are the rank-ordered data values:

strictions. Specific examples of each class are presented,

general procedures are given for constructing new filters in T-K) S S T) St S Tk ®)

each class from known examples, and the influence of thesan this notation, the median filter correspondsgjto= (o)
symmetries on root sequences is examined. for any window widthk .

This symmetry restriction is closely related to the statis-
tical notion ofexchangeability4, 5, 10]: a finite sequence
of random variables is said to be exchangeable if the joint
distribution is invariant under all possible permutations. This
notion may be extended to infinite sequenges} if all fi-
nite subsequences are exchangable, and the cannonical ex-
ample of an exchangable sequence is an independent, iden-
tically distributed (i.i.d.) sequence of random variables. Not
and defind as the(2K + 1) x (2K + 1) permutation matrix ~ SUrPrisingly, since this working assumption is widely in-
with 1’s on the cross-diagonal (lower left to upper right). voked in classical statistics, most of the “standard” statis-

This paper considers the following three filter classes: tical characterizations of data sequences are invariant un-
der all data permutations. Hence, symmetric moving win-

1. PROBLEM FORMULATION

Consider the moving average filter of widti +1 centered
atk defined by

Y = ®(Th-k, - Thy - Ty k) = S(wy) (D)

Pk: ®(Pwi) = ®(wy,) for all permutations? dow implementations of these estimators lead immediately
to moving average filters of clag.

Ri: ®(Iwy) = ®(wy) It is also interesting to note that this class of moving
average filters is essentially nonlinear since the only linear

Cr: ®(Iwy) = —2(wy). members ofPx are of the formy, = Aw, for some con-
stantA4, wherewy, is the unweighted arithmetic mean of the

Note thatJwy, represents a time-reversal of the datavif,  data window. As a specific nonlinear example, consider the

motivating the notatiofk i, and matricesA satisfying the  gecond-order Volterra filter

conditionJAJ = —A are called centroskew, motivating

the notationCx . Since filters in clas®x are invariant un- Yr = yo +a’ wy, + wi Bwy. 4)

der all permutations of the data windowy, and filters in Here,a = Ae wheree = [1,...,1]” andB is a symmetric

classR i are invariant under the specific permutatirit matrix that must satisfP” BP = B for all permutations
follows immediately thaP’xc C Ry . Conversely, note that  p = 1+ has heen shown [4, Thm. 8] that this condition is
if ® € Rx NCk, then®(wy) = —®(wy,) = 0 for all wy,. satisfied if and only if '

Overall, the classeBk, Rk andCg include many popular
filter classes, either entirely or in part. B=0Q+ pE (5)



for some permutation matriQ, whereE = ee’ is the An observation that leads to definitions of new filters in
(2K + 1) x (2K + 1) matrix of all 1's. Two particularly  classR g is the following. First, define th& -vectors
interesting special cases are the following. First, taking B -

as the identity matrix and settingjto zero yields the Ham- wi = [wk-k,. .., wk-1]

merstein model [14] wi = [wgit,.-wpik]” (10)

K and rewrite the filter output ag, = ®(w;, , zj, w; ). Mem-

Yo 9 -7 b= ¢
= + Aw; +azd_, ),
Yk = <2K 1 Tk axkz) (6) bership in clas® i therefore implies

B(wy sk, W) = (W, ap, W) (11)
and settingy to zero yields the Wiener model [14]
wherew;" denotes the time reversal of the subvestgr.

K K 2 This requirement is clearly satisfied®(-) is of the form
Yr =Y + A Tpi |+ 06 v | - (7) _ _ -

(EK ) (:ZK > b(wy, e, w;) = Clo(w, )2, dwi)] (12)

As a more general example, note that the following gau- for arbitrarye : R — R, whereg(-) is the functiong(-)

dratic filter also belongs to the clags: with its arguments reversed aiid R? — R is any function

satisfying

Yk = ATk 1Tkt1 + ThTp—1 + TpThi1] (8) P(z,y,2) =T(zy,2) (13)
_ _ _ . for all realz, y, andz. Taking¢ as the unweighted average
obtained by choosing the permutation matrix andr as the median yields the basic FMH filter, which may

be regarded as a prototype for the cldsg. Conversely,
0 0 1 taking ¢(-) as an arbitrary Volterra model leads to a new
Q= (1) (1) 8 : © variant of the FMH filter.

Like the median filter, note that the impulse response of 4. THEFILTER CLASS Cx

this \olterra filter is identically zero, in contrast to both the
Hammerstein and Wiener filters (6) and (7). In fact, it is
not difficult to see that the impulse response of a nontrivia
quadratic filter inPx (i.e., any model of the form (4) with
yo = A = 0) will be identically zero if and only if3 = 0 in
Eq. (5) andQ is a permutation matrix for whico o # 1.

The clas<k is quite different from eithePx or Rk. In
| particular, note that filters ifii all exhibit zero responses
to constant inputs, an@y includes both the classical linear
antisymmetric differentiation filters [8], and some interest-
ing nonlinear extensions. Specifically, note that the filter
classCk includes all filters satisfying Eq. (12) where the
symmetry condition (13) is replaced by the antisymmetry
3. THE FILTER CLASS Ry condition
F(m,y,z) = —F(Z,y,l') (14)
Generalizations of thé-filters defined in Eq. (2) that com-  for al reals, y, andz. Here, note the similarity to the gen-
bine both temporal and rank ordering [2, 6, 13] do not be- gra| FMH structure discussed above: thégefilters may

long to the clas$x . Similarly, other extensions of the me-  pe viewed as an antisymmetric combination of the forward
dian filter like the FMH filters of Heinonen and Neuvo [9] predictiong(w;, ) and the backward predictiq]f(w,j).

that distinguish between the past elements; and the fu- As a specific example, consider the nonlinear filter

ture elements:,; for i > 0 are also not included iPg.

Conversely, symmetric versions of these filters do belong y = Amedzii1,..., Ttk }

to the classRk, along with the classical linear symmet- —medzg—_1, ..., Th—K }|- (15)

ric smoothing filters [8]. Thus, an understanding of the

consequences of the symmetry restriction defifitggmay If K = 2q+ 1, the response of this filter to any monotoni-
provide useful insights into the behavioral differences be- cally increasing or decreasing sequence is the linear deriva-
tween these different filter types. The claBg also in- tive approximatiory;, = A[¢+q+1 — Tr—g—1]. FOrg =0,

cludes a wider variety of Volterra filters, but they remain this filter reduces to the linear central difference approxi-
highly structured. For example, the quadratic parametermation for all input sequences, but fer> 0 the nonlinear
matrix B defining a2"¢-order \olterra filter is necessarily  differentiator is immune to isolated “spikes” in the data, in
centrosymmetricIBJ = B), a class that includes all sym-  sharp contrast to extreme sensitivity of linear differentiation
metric Toeplitz matrices. filters to these artifacts.



As another example of a nonlinear filter@g-, consider

1 & 1 &
yk:|mk—f;l‘k7i|—|mk—?;l‘k+i|- (16)

coefficients satisfy the requirements for inclusiod jp, the
corresponding generalized Volterra filter will belong to the
classR.

A much more flexible extension of this idea is the fol-
lowing one. Define\ to be any endomorphism @2 +1

In contrast to the previous examples, this fillter illustrates (i.e., any mapping of this vector space into itself), consider
that not all functions satisfying the antisymmetry condition ® € Pk and assume that o P = P o A for all permuta-

(14) are independent of the central variafpldn fact, note
that any function of the form
L(z,y,2) =v(z,y) —v(2,9) a7)

satisfies this condition, for arbitraty: R — R. Similarly,

tionsP. It follows immediately that

boNoP = doPoN=>"oN

= ®oN € Pg. (21)

Similarly, if N oJ = J o A then® o N belongs toR i

products of an odd number of distinct functions satisfying it ¢ does. As a specific example, note thatfis of the

Eq. (14) also satisfy this condition.

5. SYMMETRIES AND RELATIONS BETWEEN
CLASSES

Given an arbitrary member of any of the three filter classes
just described, it is possible to construct an uncountably in-

form N[x] = diag{g(z)}, it follows that N o P for any
permutatiorP. If we further assume the scalar functigf)

is invertible, the following composition defines the class of
homomorphic systems [2, 14, 15]:

T=glodoN. (22)

finite number of additional examples on the basis of the fol- Note that if® is a filter of classPx or R, the homomor-

lowing results. First, iff : R — R™ andg : R™ — RP,
the compositiory o f is defined as

go f(z)=g(f(x)).

Note that if® € R or ® € Pk then so isf o ® for any
scalar functionf. Next, recall that a functiorf is even if
f(=z) = f(z) and odd iff(—z) = —f(x). If ® € Cx
thenf o ® € Ck providedf is odd; conversely, if is even
it follows thatf o ® € R.

These observations may be used to defigmmetric
generalized Volterra filtersas follows. Denote by n 2k 41)
the following finite Volterra model [14, ch. 5]:

(18)

N
Yr = y0+zvn(k)
n=1
K K
va(k) = Y o D an(in,.. ., in)
i=—K  in=—K
S Tg—iy  Theiy - (19)

The corresponding generalized Volterra filter is defined as

N
o =40+ > fulva(k)) (20)
n=1

wheref, : R — R is arbitrary. This filter will belong to
classPk or Rk if the Volterra coefficieintsy,, (i1, - . -, i)

phic filter also belongs to this class; againg(f) is an odd
function and® belongs to clas§x, the homomorphic filter
also belongs to clagsk. As a specific example, note that
all uniformly weighted nonlinear mean filters [2, 15] belong
to classPg and all symmetrically weighted nonlinear mean
filters belong to clas® i. As a more unusual example, note
that the homomorphic filters obtained from the median filter
or any other L-filter also belong to cla®s.

More generally, suppos¥ is an endomorphism d¢>%+1
and denote each component of this mapping;ayR?5+1 —
Rfori = —-K,...,K. It follows immediately that ify; €
Pk for all i then NV o P = N for all permutationsP and
the compositionb o A belongs toPx if ® does. This ob-
servation is interesting in part because the rank-ordering op-
erator satisfies this condition for all permutatiohs Simi-
larly, if n; € Rx for all 4, it follows thatA o J = A and
® o N belongs toR i if ® does. Finally, a similar result ap-
plies ifn; € Cx for all 7, but again with restrictions: there,
N oJ = —N, implying ® o A belongs to clas€k if ® is
an odd-symmetry mapping of clags.

6. ROOT SEQUENCES

If a sequencqz} is invariant to a filter®, it is called a

root sequence and the characterization of root sequences is
a topic of considerable interest in nonlinear digital filtering
[1, 2, 3, 7, 12]. The following discussion briefly considers
the influence of the symmetry classes introduced here on the

satisfies the symmetry conditions noted in Secs. 2 or 3, re-character of these root sequences.

spectively. Similar reasoning applies to the clégspro-
vided the scalar functions, (-) exhibit odd symmetry; again,

First, consider the clasBx and note that the response
to constant sequences is constant; hence, the constant se-

if these functions exhibit even symmetry and the \olterra quencer;, = ¢ will be a root for the filter® € Px if and



only if ®(c,...,c) = c. Note that sufficient conditions for  note that the identity filteg;, = z;, belongs to the clask k

this result to hold are Mallows’ criteria A2 (location invari- for all K, so this symmetry requirement imposes no restric-
ance,®(wy, + ¢) = ®(wy) + ¢) and A3 (the filter is cen-  tions on the possible root sequencasysequence can be a
tered,®(0) = 0) [11]. To search for more interesting root root for some filter iMR .. Conversely, the symmetry con-
sequences, consider the class of periodic sequences with palition defining the clas§x imposes some rather stringent
riod P. For P = 2, the sequencéz;} may be written as  restrictions on the character of the possible root sequences.
...ababa ..., and the the requirement for a root sequence For example, since the response of any filter in this class
reduces to to constant sequences is identically zero, it follows that the
only constant root sequence is the zero sequence. In fact, it
is easily demonstrated that this conclusion extends to period
For K = 1, this condition cannot be satisfied by smoothing 2 Seduences for any clag . This point is most easily seen
filters like the median filter or the unweighted average, but for the casei’ = 1, but the result extends readily to arbi-

it can be satisfied by filters that extract extreme values. Fortrary K. Specifically, for a perio@ sequence to be a root
example, defing: as the median of the values y, andz, sequence, itis necessary that

and consider the filter defined by the function

®(a,b,a) =b ®(b,a,b) =b. (23)

®(a,b,a) = b = —®(a,b,a) =b=0
z |z —upl>y—pllz—pl ®(b,a,b) = a = —®(b,a,b) = a=0. (27)
O(x,y,2)=q ¥ ly—pl2lz—pllz—p (24 - . . "
2z |z —p| > |z —plly — ul. In contrast, it is possible for filters in the clagg to exhibit

. o _nontrivial periodic root sequences of peridd + 1. This
Note that any perio@ sequence satisfies Eq. (23) for this point is illustrated fork = 1 by the following example.

filter. Conversely, fork” > 1, period2 roots are more  Consider the periodl sequence (25) and suppose it is a root,
common. In particular, it is known that arbitrary binary se- jmplying

guences are roots of median filters of even half-wiltfi].
Similarly, any period sequence may be expressed as ®(a,b,c)=b ®(c,a,b)=a ®(b,c,a) =c. (28)

.~y a,beabe, . (25)  Values for®(c,b,a), ®(b,a,c), and®(a, c, b) follow from
these conditions by symmetry, but these conditions together
only define6 of the 27 values for the functior®(z, y, z)
when the variables, y, andz are restricted to the values
a, b, ande. Of the remaining1 values,9 are identically
zero by the antisymmetry restrictions; six of the remaining
®(c,a,b) = a = @(a,b,c) = D. (26) 12 function values may be specified arbitrarily and the other
six are determined from these six by the antisymmetry re-
striction. Hence, even if we restrict consideration to endo-
morphisms of the discrete set of valugs b, ¢} (implyint

and if it is a root sequence, it must satisfy the conditions

®(a,b,c)
®(b,c,a) =

o (=

= ®(a,b,c) = b

In other words, any period root sequence is necessarily
constant for a filter in clas®;,. More generally, the same

construction shows that any peri@dk + 1 root sequence X
that one of these values is zero), we are left ith= 216

is necessarily constant for any filter in claBg since any - D - :
data window contains precisely one period of the sequence CONSiStent ways of specifying the remaining function val-
s.

differing only in order. The same argument extends to pe- Y€ _ _ ,
Next, consider the question of binary root sequences for

riodic roots of periodP = (2K + 1)/n for any integem ) i
since the data window then includesomplete periods of ~ the filter clasCx. It follows from the antisymmetry re-
quirement defining’ i that any nontrivial binary root se-

the sequence for all.
A similar argument may also be used to show that im- guence must assume the valdesfor somea # 0. Further,

pulses cannot be root sequences of any filtgfin Specif- sinceg./,c = 0 identically for constant sequences, it follows
ically, it follows by permutation symmetry that the filter re- that binary root sequences cannot contain subsequences of

sponse is necessarily constant for any window that containd®"9th 2K + 1. Similarly, if a root sequence contained a
the nonzero value of the impulse. Hence, the impulse re-Subsequence of leng#’, it would also have to include the
sponse of any filter in clasBs is of width 2K + 1; note ~ subsequence
that this response can be identically zero, as in the case of

the median filter, but anx filter with a nonzero impulse

response exhibits the same character as the linear movingg avoid subsequences of lengt + 1. However, the an-

average filter. . tisymmetry requirement then leads to a contradiction:
SincePx C Ry, any type of root sequence that is pos-

sible for classPg is also possible for clasR . Further, ®(—a,a,...,a,a) = —¥(a,a,...,a,—a) = a=—a.
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