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ABSTRACT

Nonrecursive digital filters are popular because they are in-
herently stable, unlike their recursive counterparts, and have
been shown to be effective in a wide variety of situations.
For example, Astola and Kuosmanen describe20 differ-
ent classes of nonrecursive filters [2], many of which are
included in the general class of nonlinear smoothing fil-
ters considered by Mallows [11]. This paper defines three
classes of nonrecursive filters based on symmetry restric-
tions and explores some of the consequences of these re-
strictions. Specific examples of each class are presented,
general procedures are given for constructing new filters in
each class from known examples, and the influence of these
symmetries on root sequences is examined.

1. PROBLEM FORMULATION

Consider the moving average filter of width2K+1 centered
atk defined by

yk = �(xk�K ; : : : ; xk; : : : ; xk+K) � �(wk) (1)

and defineJ as the(2K+1)�(2K+1) permutation matrix
with 1’s on the cross-diagonal (lower left to upper right).
This paper considers the following three filter classes:

PK : �(Pwk) = �(wk) for all permutationsP

RK : �(Jwk) = �(wk)

CK : �(Jwk) = ��(wk).

Note thatJwk represents a time-reversal of the data inwk,
motivating the notationRK , and matricesA satisfying the
conditionJAJ = �A are called centroskew, motivating
the notationCK . Since filters in classPK are invariant un-
der all permutations of the data windowwk and filters in
classRK are invariant under the specific permutationJ, it
follows immediately thatPK � RK . Conversely, note that
if � 2 RK \ CK , then�(wk) = ��(wk) = 0 for all wk.
Overall, the classesPK ,RK andCK include many popular
filter classes, either entirely or in part.

2. THE FILTER CLASS PK

The classPK consists of the FIR filters of the form (1) that
are symmetric with respect to all of the argumentsxk�j in
the data windowwk. Note that this class includes allL-
filters with constant weightsfwig:

yk =

KX
i=�K

wix(i); (2)

wherex(i) are the rank-ordered data values:

x(�K) � � � � � x(0) � � � � � x(K): (3)

In this notation, the median filter corresponds toyk = x(0)
for any window widthK.

This symmetry restriction is closely related to the statis-
tical notion ofexchangeability[4, 5, 10]: a finite sequence
of random variables is said to be exchangeable if the joint
distribution is invariant under all possible permutations. This
notion may be extended to infinite sequencesfxkg if all fi-
nite subsequences are exchangable, and the cannonical ex-
ample of an exchangable sequence is an independent, iden-
tically distributed (i.i.d.) sequence of random variables. Not
surprisingly, since this working assumption is widely in-
voked in classical statistics, most of the “standard” statis-
tical characterizations of data sequences are invariant un-
der all data permutations. Hence, symmetric moving win-
dow implementations of these estimators lead immediately
to moving average filters of classPK .

It is also interesting to note that this class of moving
average filters is essentially nonlinear since the only linear
members ofPK are of the formyk = A �wk for some con-
stantA, where�wk is the unweighted arithmetic mean of the
data window. As a specific nonlinear example, consider the
second-order Volterra filter

yk = y0 + aTwk +wT
kBwk: (4)

Here,a = Ae wheree = [1; : : : ; 1]T andB is a symmetric
matrix that must satisfyPTBP = B for all permutations
P. It has been shown [4, Thm. 8] that this condition is
satisfied if and only if

B = �Q+ �E (5)



for some permutation matrixQ, whereE = eeT is the
(2K + 1) � (2K + 1) matrix of all 1’s. Two particularly
interesting special cases are the following. First, takingQ

as the identity matrix and setting� to zero yields the Ham-
merstein model [14]

yk =

KX
i=�K

�
y0

2K + 1
+Axk�i + �x2k�i

�
; (6)

and setting� to zero yields the Wiener model [14]

yk = y0 +A

 
KX

i=�K

xk�i

!
+ �

 
KX

i=�K

xk�i

!2

: (7)

As a more general example, note that the following qau-
dratic filter also belongs to the classC1:

yk = �[xk�1xk+1 + xkxk�1 + xkxk+1] (8)

obtained by choosing the permutation matrix

Q =

2
4 0 0 1

1 0 0
0 1 0

3
5 : (9)

Like the median filter, note that the impulse response of
this Volterra filter is identically zero, in contrast to both the
Hammerstein and Wiener filters (6) and (7). In fact, it is
not difficult to see that the impulse response of a nontrivial
quadratic filter inPK (i.e., any model of the form (4) with
y0 = A = 0) will be identically zero if and only if� = 0 in
Eq. (5) andQ is a permutation matrix for whichQ0;0 6= 1.

3. THE FILTER CLASS RK

Generalizations of theL-filters defined in Eq. (2) that com-
bine both temporal and rank ordering [2, 6, 13] do not be-
long to the classPK . Similarly, other extensions of the me-
dian filter like the FMH filters of Heinonen and Neuvo [9]
that distinguish between the past elementsxk�i and the fu-
ture elementsxk+i for i > 0 are also not included inPK .
Conversely, symmetric versions of these filters do belong
to the classRK , along with the classical linear symmet-
ric smoothing filters [8]. Thus, an understanding of the
consequences of the symmetry restriction definingPK may
provide useful insights into the behavioral differences be-
tween these different filter types. The classRK also in-
cludes a wider variety of Volterra filters, but they remain
highly structured. For example, the quadratic parameter
matrixB defining a2nd-order Volterra filter is necessarily
centrosymmetric (JBJ = B), a class that includes all sym-
metric Toeplitz matrices.

An observation that leads to definitions of new filters in
classRK is the following. First, define theK-vectors

w�k = [wk�K ; : : : ; wk�1]
T

w+
k = [wk+1; : : : ; wk+K ]T (10)

and rewrite the filter output asyk = �(w�k ; xk;w
+
k ). Mem-

bership in classRK therefore implies

�(w�k ; xk;w
+
k ) = �( ~w+

k ; xk; ~w
�

k ) (11)

where ~w�k denotes the time reversal of the subvectorw�k .
This requirement is clearly satisfied if�(�) is of the form

�(w�k ; xk;w
+
k ) = �[�(w�k ); xk ;

~�(w+
k )] (12)

for arbitrary� : RK ! R, where~�(�) is the function�(�)
with its arguments reversed and� : R3 ! R is any function
satisfying

�(x; y; z) = �(z; y; x) (13)

for all realx, y, andz. Taking� as the unweighted average
and� as the median yields the basic FMH filter, which may
be regarded as a prototype for the classRK . Conversely,
taking �(�) as an arbitrary Volterra model leads to a new
variant of the FMH filter.

4. THE FILTER CLASS CK

The classCK is quite different from eitherPK or RK . In
particular, note that filters inCK all exhibit zero responses
to constant inputs, andCK includes both the classical linear
antisymmetric differentiation filters [8], and some interest-
ing nonlinear extensions. Specifically, note that the filter
classCK includes all filters satisfying Eq. (12) where the
symmetry condition (13) is replaced by the antisymmetry
condition

�(x; y; z) = ��(z; y; x) (14)

for all realx, y, andz. Here, note the similarity to the gen-
eral FMH structure discussed above: theseCK filters may
be viewed as an antisymmetric combination of the forward
prediction�(w�k ) and the backward prediction~�(w+

k ).
As a specific example, consider the nonlinear filter

yk = A[medfxk+1; :::; xk+Kg

� medfxk�1; :::; xk�Kg]: (15)

If K = 2q + 1, the response of this filter to any monotoni-
cally increasing or decreasing sequence is the linear deriva-
tive approximationyk = A[xk+q+1 � xk�q�1]. Forq = 0,
this filter reduces to the linear central difference approxi-
mation for all input sequences, but forq > 0 the nonlinear
differentiator is immune to isolated “spikes” in the data, in
sharp contrast to extreme sensitivity of linear differentiation
filters to these artifacts.



As another example of a nonlinear filter inCK , consider

yk = jxk �
1

K

KX
i=1

xk�ij � jxk �
1

K

KX
i=1

xk+ij: (16)

In contrast to the previous examples, this fillter illustrates
that not all functions satisfying the antisymmetry condition
(14) are independent of the central variabley. In fact, note
that any function of the form

�(x; y; z) = (x; y)� (z; y) (17)

satisfies this condition, for arbitrary : R2 ! R. Similarly,
products of an odd number of distinct functions satisfying
Eq. (14) also satisfy this condition.

5. SYMMETRIES AND RELATIONS BETWEEN
CLASSES

Given an arbitrary member of any of the three filter classes
just described, it is possible to construct an uncountably in-
finite number of additional examples on the basis of the fol-
lowing results. First, iff : Rn ! Rm andg : Rm ! Rp,
the compositiong � f is defined as

g � f(x) = g(f(x)): (18)

Note that if� 2 RK or � 2 PK then so isf � � for any
scalar functionf . Next, recall that a functionf is even if
f(�x) = f(x) and odd iff(�x) = �f(x). If � 2 CK
thenf �� 2 CK providedf is odd; conversely, iff is even
it follows thatf �� 2 RK .

These observations may be used to definesymmetric
generalized Volterra filters, as follows. Denote byV(N;2K+1)

the following finite Volterra model [14, ch. 5]:

yk = y0 +

NX
n=1

vn(k)

vn(k) =
KX

i1=�K

� � �
KX

in=�K

�n(i1; : : : ; in)

� xk�i1 � � �xk�in : (19)

The corresponding generalized Volterra filter is defined as

yk = y0 +
NX
n=1

fn(vn(k)) (20)

wherefn : R ! R is arbitrary. This filter will belong to
classPK orRK if the Volterra coefficieints�n(i1; : : : ; in)
satisfies the symmetry conditions noted in Secs. 2 or 3, re-
spectively. Similar reasoning applies to the classCK pro-
vided the scalar functionsfn(�) exhibit odd symmetry; again,
if these functions exhibit even symmetry and the Volterra

coefficients satisfy the requirements for inclusion inCK , the
corresponding generalized Volterra filter will belong to the
classRK .

A much more flexible extension of this idea is the fol-
lowing one. DefineN to be any endomorphism ofR2K+1

(i.e., any mapping of this vector space into itself), consider
� 2 PK and assume thatN � P = P � N for all permuta-
tionsP . It follows immediately that

� � N � P = � � P � N = � � N

) � � N 2 PK : (21)

Similarly, if N � J = J � N then� � N belongs toRK

if � does. As a specific example, note that ifN is of the
form N [x] = diagfg(xk)g, it follows thatN � P for any
permutationP . If we further assume the scalar functiong(�)
is invertible, the following composition defines the class of
homomorphic systems [2, 14, 15]:

	 = g�1 �� � N : (22)

Note that if� is a filter of classPK orRK , the homomor-
phic filter also belongs to this class; again, ifg(�) is an odd
function and� belongs to classCK , the homomorphic filter
also belongs to classCK . As a specific example, note that
all uniformly weighted nonlinear mean filters [2, 15] belong
to classPK and all symmetrically weighted nonlinear mean
filters belong to classRK . As a more unusual example, note
that the homomorphic filters obtained from the median filter
or any other L-filter also belong to classPK .

More generally, supposeN is an endomorphism ofR2K+1

and denote each component of this mapping by�i : R
2K+1 !

R for i = �K; : : : ;K. It follows immediately that if�i 2
PK for all i thenN � P = N for all permutationsP and
the composition� � N belongs toPK if � does. This ob-
servation is interesting in part because the rank-ordering op-
erator satisfies this condition for all permutationsP . Simi-
larly, if �i 2 RK for all i, it follows thatN � J = N and
��N belongs toRK if � does. Finally, a similar result ap-
plies if �i 2 CK for all i, but again with restrictions: there,
N � J = �N , implying� � N belongs to classCK if � is
an odd-symmetry mapping of classRK .

6. ROOT SEQUENCES

If a sequencefxkg is invariant to a filter�, it is called a
root sequence and the characterization of root sequences is
a topic of considerable interest in nonlinear digital filtering
[1, 2, 3, 7, 12]. The following discussion briefly considers
the influence of the symmetry classes introduced here on the
character of these root sequences.

First, consider the classPK and note that the response
to constant sequences is constant; hence, the constant se-
quencexk = c will be a root for the filter� 2 PK if and



only if �(c; : : : ; c) = c. Note that sufficient conditions for
this result to hold are Mallows’ criteria A2 (location invari-
ance,�(wk + c) = �(wk) + c) and A3 (the filter is cen-
tered,�(0) = 0) [11]. To search for more interesting root
sequences, consider the class of periodic sequences with pe-
riod P . ForP = 2, the sequencefxkg may be written as
: : : ababa : : :, and the the requirement for a root sequence
reduces to

�(a; b; a) = b �(b; a; b) = b: (23)

ForK = 1, this condition cannot be satisfied by smoothing
filters like the median filter or the unweighted average, but
it can be satisfied by filters that extract extreme values. For
example, define� as the median of the valuesx, y, andz,
and consider the filter defined by the function

�(x; y; z) =

8<
:

x jx� �j > jy � �j; jz � �j
y jy � �j � jx� �j; jz � �j
z jz � �j > jx� �j; jy � �j:

(24)

Note that any period2 sequence satisfies Eq. (23) for this
filter. Conversely, forK > 1, period2 roots are more
common. In particular, it is known that arbitrary binary se-
quences are roots of median filters of even half-widthK [1].

Similarly, any period3 sequence may be expressed as

: : : ; a; b; c; a; b; c; : : : (25)

and if it is a root sequence, it must satisfy the conditions

�(a; b; c) = b

�(b; c; a) = c = �(a; b; c) = b

�(c; a; b) = a = �(a; b; c) = b: (26)

In other words, any period3 root sequence is necessarily
constant for a filter in classP1. More generally, the same
construction shows that any period2K + 1 root sequence
is necessarily constant for any filter in classPK since any
data window contains precisely one period of the sequence,
differing only in order. The same argument extends to pe-
riodic roots of periodP = (2K + 1)=n for any integern
since the data window then includesn complete periods of
the sequence for allk.

A similar argument may also be used to show that im-
pulses cannot be root sequences of any filter inPK . Specif-
ically, it follows by permutation symmetry that the filter re-
sponse is necessarily constant for any window that contains
the nonzero value of the impulse. Hence, the impulse re-
sponse of any filter in classPK is of width 2K + 1; note
that this response can be identically zero, as in the case of
the median filter, but anyPK filter with a nonzero impulse
response exhibits the same character as the linear moving
average filter.

SincePK � RK , any type of root sequence that is pos-
sible for classPK is also possible for classRK . Further,

note that the identity filteryk = xk belongs to the classRK

for all K, so this symmetry requirement imposes no restric-
tions on the possible root sequences:anysequence can be a
root for some filter inRK . Conversely, the symmetry con-
dition defining the classCK imposes some rather stringent
restrictions on the character of the possible root sequences.
For example, since the response of any filter in this class
to constant sequences is identically zero, it follows that the
only constant root sequence is the zero sequence. In fact, it
is easily demonstrated that this conclusion extends to period
2 sequences for any classCK . This point is most easily seen
for the caseK = 1, but the result extends readily to arbi-
traryK. Specifically, for a period2 sequence to be a root
sequence, it is necessary that

�(a; b; a) = b = ��(a; b; a) ) b = 0

�(b; a; b) = a = ��(b; a; b) ) a = 0: (27)

In contrast, it is possible for filters in the classCK to exhibit
nontrivial periodic root sequences of period2K + 1. This
point is illustrated forK = 1 by the following example.
Consider the period3 sequence (25) and suppose it is a root,
implying

�(a; b; c) = b �(c; a; b) = a �(b; c; a) = c: (28)

Values for�(c; b; a), �(b; a; c), and�(a; c; b) follow from
these conditions by symmetry, but these conditions together
only define6 of the 27 values for the function�(x; y; z)
when the variablesx, y, andz are restricted to the values
a, b, andc. Of the remaining21 values,9 are identically
zero by the antisymmetry restrictions; six of the remaining
12 function values may be specified arbitrarily and the other
six are determined from these six by the antisymmetry re-
striction. Hence, even if we restrict consideration to endo-
morphisms of the discrete set of valuesfa; b; cg (implyint
that one of these values is zero), we are left with63 = 216
consistent ways of specifying the remaining function val-
ues.

Next, consider the question of binary root sequences for
the filter classCK . It follows from the antisymmetry re-
quirement definingCK that any nontrivial binary root se-
quence must assume the values�a for somea 6= 0. Further,
sinceyk = 0 identically for constant sequences, it follows
that binary root sequences cannot contain subsequences of
length2K + 1. Similarly, if a root sequence contained a
subsequence of length2K, it would also have to include the
subsequence

: : : ; �a; a; : : : ; a;�a; : : :

to avoid subsequences of length2K + 1. However, the an-
tisymmetry requirement then leads to a contradiction:

�(�a; a; : : : ; a; a) = ��(a; a; : : : ; a;�a) ) a = �a:



Hence, constant subsequences of length2K are also for-
bidden in a binary root sequence. Similarly, subsequences
of length2K � 1 are also inadmissible in root sequences
because they would have to be imbedded in a symmetric
sequence of length2K + 1 to avoid the creation of subse-
quences of length2K or 2K +1, thus implyingyk = 0. As
an immediate corollary, it follows that the filters in classC1
cannot exhibit nontrivial binary root sequences. Conversely,
binary root sequencesarepossible forK > 1, as the follow-
ing example illustrates. Specifically, the period6 sequence
based on the subsequencea; a;�a;�a; a;�a can be a root
sequence for a filter in classC2 that maps bilinear sequences
into the setf�a; 0; ag.

Finally, as an interesting application of these root se-
quence results, suppose� 2 CK is of the form (12) for
K = 2q + 1 and� 2 Rq . It follows that ~�(w+

k ) = �(w+
k )

andyk = �(�(w�k ); xk; �(w
+
k )). Further, iffxkg is a root

sequence for�(�), then�(w�k ) = xk�q�1 and�(w+
k ) =

xk+q+1, implying

yk = �(xk�q�1; xk; xk+q+1): (29)

The response of the median differentiator defined in Eq.
(15) to monotonic sequences follows directly from this re-
sult.

7. SUMMARY

This paper has defined three classes of symmetric nonlin-
ear moving average filters,PK , RK , andCK , all of which
include popular filter classes as subsets; in addition, new
members of each class have been described here, along with
some characterizations of filters within these classes and
systematic procedures for constructing additional filters in
each class. For example, a complete characterization of
quadratic filters in classPK was given, including necessary
and sufficient conditions for impulse rejection; in addition,
the class of generalized Volterra models was defined and
conditions for these models to belong to each of these sym-
metry classes were given. In general, the FMH filter ap-
pears to be the prototype for filters in the classRK , while
the classCK appear to be generalized differentiation filters.
The classPK is required to be invariant under the permu-
tation group defined by the data window whereas the class
RK is only required to be invariant with respect to the per-
mutation subgroup defined by time reversal. The defining
conditions forPK are restrictive enough to exclude noncon-
stant period2K + 1 sequences and impulses from the root
set, but the symmetry conditions defining the classRK do
not impose any restrictions on possible root sequences for
these filters. An interesting extension would be to consider
other subgroups of the permutation group, exploring both
the resulting filter structures and their root sequences.
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