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ABSTRACT

Threshold Boolean �lters (TBFs) constitute a large
class of non-linear �lters that are very e�ective in re-
moving impulsive noise. However, the required com-
putational complexity is very high because threshold-
ing has to be done at all levels. In this paper, a new
type of �lters based on threshold operation is proposed.
The proposed �lters, called threshold pattern �lters
(TPFs), try to pick up a sample within the window
as the output such that the objective function, which
is chosen based on the threshold patterns, is minimized.
An e�cient MAE-based training method for designing
TPFs is proposed. Some designed TPFs are applied to
enhanced images corrupted by mixed noise and the re-
sults are very comparable to that of the corresponding
TBFs.

1. INTRODUCTION

Threshold Boolean �lters (TBFs) [1] are large class of
non-linear �lters which are e�ective in removing impul-
sive noise. They include the well-known stack �lters
and median �lter. However, one drawback of TBFs is
their complexity. To obtain the �lter's output, thresh-
olding has to be done at all levels. The binary vector at
each level is then �ltered by a Boolean function. The
outputs of the Boolean functions at all levels are then
added up to form the �lter's output.

Using the fact that there are only at most N + 1
distinct binary vectors in a given window of size N ,
more e�cient method to �nd out �lter's output based
on sorting are developed [1]. However, the complexity
is still high.

In this paper, a new type of �lters based on thresh-
old operation called threshold pattern �lters (TPFs) is
proposed. This type of �lters aims at removing im-
pulsive noise in a relatively simple �lter structure. To
avoid high complexity of thresholding at all levels, a
TPF only thresholds the window at the levels equal to

sample values in the window. We call the binary vec-
tors obtained \threshold patterns". One of the sam-
ples in the window is selected as the �lter's output.
The selection is based on some criteria of the threshold
patterns obtained in the window.

In the next section, the detail structure of the pro-
posed �lter is introduced. In Section 3, relation be-
tween the proposed �lters and the rank-order �lters
(ROFs) is discussed. An e�cient design method for
TPFs is developed in Section 4. In Section 5, TPFs are
applied to enhance images corrupted by mixed noise.
Their performances are compared with those of TBFs
and other commonly used techniques. Some concluding
remarks are given in Section 6.

2. STRUCTURE OF TPFS

Suppose that X can only take values 0; 1; � � � ;M , i.e.
(M +1)-valued. Thresholding X at level m, an integer
between 1 and M inclusively, is de�ned as :

Im(X) =

�
1 ; if X � m

0 ; otherwise
(1)

For a vector X = [X1; � � � ; XN ] , Im(X) =
[ Im(X1); � � � ; Im(XN ) ] becomes a binary vector of
length N . Each of the 2N distinct vectors is called a
threshold pattern. We denote a threshold pattern by
vi, where vi 2 B

N is the binary representation of the
decimal number i, i = 1; 2; � � � ; 2N � 1.

Let f(�) be a binary-vector-input real-value-output
function, i.e. :

f : BN ! R : (2)

Then the threshold pattern �lter (TPF) operation
TPFf (�), where function f is the �lter parameter, is
de�ned as :

TPFf (X) = arg

�
min

X1;���;XN

�
f(IXr

(X))

��
(3)
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Figure 1: Structure of TPFs

This �lter structure, as shown in Figure 1, has an
intuitive interpretation | if there is an objective func-
tion f(�) which depends on the threshold patterns, the
�lter tries to pick a sample from the window as output
such that the objective function is minimized among
the samples in the window.

If f(vi) is chosen to be the mean absolute error
(MAE) of using Xr , where IXr

(X) = vi , as an esti-
mate of desired signal s, then the �lter will choose a
sample from window as output such that the MAE is
minimized.

It can be seen that the complexity of TPFs is much
lower than that of TBFs. For TPFs, thresholding is
needed only at N levels that are equal to sample val-
ues in the window, instead of all levels from 1 toM as in
TBFs. Even compared with the e�cient implementa-
tion of TBFs in which only N thresholdings are needed
[1], TPFs save the computations for sorting, subtrac-
tions and additions needed in TBFs with N compare-
and-select operations.

3. RELATION WITH RANK-ORDER

FILTERS

Threshold patterns provide useful information about
the ranks of the samples within the window. For the
threshold pattern at level Xr, 0's in the pattern indi-
cate the samples which are smaller than Xr and the 1's
indicate the of samples which are greater than or equal
to Xr. If the samples in the window are all distinct, the
number of ones is in fact the rank of Xr in decending
order.

Based on the above fact, it can be shown that a
TPF is a supper-set of rank-order �lters (ROFs) [2].
Suppose that a ROF chooses the r-th largest sample
as output. By setting f(v(r)) < f(v(r+1)) < � � � <

f(v(N)) < f(v(m)) , where v(r) is the threshold pattern
with r ones and m < r, it can be sure that the TPF
always select the r-th largest sample as output.

To verify this, let's �rst assume that the samples in
the window are all distinct. Then the threshold pattern
at sample value whose rank is r has exactly r ones.
By above parameter ordering, this sample is chosen
as output. Obviously, the arguement also holds when
some of the samples which rank higher or lower than r

are not distinct.
The remaining scenario is that the sample that rank

r is not distinct, but appears several times in the win-
dow. Then, threshold pattern at that level must have
r or more ones. Suppose that the threshold pattern at
this sample value has k ones, where k > r, then, it is
impossible to have threshold patterns with number of
ones between r and k � 1 for that window. Therefore,
f(vk) is the minimimun value among all the threshold
patterns in the window and the �lter's output has the
same value as the r-th ranked sample. However, note
that the reverse does not hold, i.e. if there are k ones
in the threshold pattern at level whose rank is r, where
k � r, it is possible to have k + 1; k + 2; � � � ; N ones in
the threshold patterns for that window. But they are
produced by thresholding the window at values smaller
than the k-th rank sample, and these values should not
be chosen as output. It is therefore necessary to set
f(v(r)) < f(v(r+1)) < � � � < f(v(N)) < f(v(m)), where
m < r, such that a TPF becomes a r-th rank ROF.

4. AN EFFICIENT DESIGN METHOD

The optimal MAE design of TPFs under training frame-
work can be stated as : Given an observed signal X(n)
and a desired signal s(n), �nd a mapping f : BN ! R,
such that the expected absolute error between the de-
sired signal and the signal produced by �ltering the
observed signal is minimized. Mathematically, it can
be formulated as :

minimize J(f) = E

� ��TPFf (X)� s
��� (4)

f

where X is the input window.
However, the minimization above is very compli-

cated and no practical algorithm has been found to
solve the problem at this time. Instead, we adopt an
ad-hoc approach in designing the �lters. As described
in Section 2, if the function f(vi) represents the MAE
of selecting Xr, which gives rise to the threshold pat-
tern vi, then, the �lters try to minimize the MAE. With
this interpretation, the �lter design now changes to a



problem of estimating the MAE associated with the
threshold pattern vi.

Let X(n) be the input window at time n. Let "(vi)
be the accumulative absolute error for the pattern vi
and �(vi) be the occurrence of the pattern vi. De�ne
M(vi) = f(n; r) : IXr

(X(n)) = vig. Then,

"(vi) =
X

(n;r)2M(v
i
)

j Xr(n)� s(n) j (5)

for i = 1; 2; � � � ; 2N � 1, and

�(vi) = CardfM(vi)g (6)

for i = 1; 2; � � � ; 2N � 1.

The MAE associated with the threshold pattern vi,
i.e. f(vi), is estimated by :

f(vi) =
"(vi)

�(vi)
(7)

for i = 1; 2; � � � ; 2N � 1.
With this mapping, a TPF is then de�ned. Note

that the �lters obtained by this method are not neces-
sarily optimal. But we will show by simulations that
this design method yields promising results in practical
cases in the next section.

The complexity of designing TPFs as proposed above
is lower than that of TBFs under the sum of micro
MAE (SMMAE) criterion [1]. Again, the reason is that
the number of thresholding needed is much reduced.

5. SIMULATIONS

5.1. Enhancing a Noisy Edge

In this part of simulation, we try to �nd out the �lter's
response to a noisy edge. An ideal 1-D edge of height
100 is shown in Figure 2(a). It is corrupted by additive
mixed noise having the following distribution :

� � (1� �)N (0; �) + �N (0;
�

�
) (8)

where � = 10, � = 0:1.
The noisy signal, as shown in Figure 2(b), and the

clear signal are used to train TPFs with window size
N = 5 by method proposed in Section 4. TBFs are
also trained, under the sum of micro MAE criterion,
using the same set of signals.

The resulting �lters are then applied to �lter the
noisy signal. Their outputs are shown in Figure 2(c)
and 2(d) respectively. Broken lines in the �gures indi-
cate the shape of the ideal edge. For comparison, the
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Figure 2: (a) An ideal edge; (b) the corrupted edge;
(c) �ltered by TPF; (d) �ltered by TBF; (e) �ltered by
median �lter; (f) �ltered by averaging �lter.

results for median �lter and averaging �lter are also
included in Figure 2. The MAEs of the �ltered signals
deviated from the ideal edge are listed in Table 1.

Table 1: MAEs for noisy and �ltered signals
Signal MAE
Noisy 14.36
TPF 5.24
TBF 5.16

Median 5.90
Averaging 12.39

It can be observed from Figure 2 that TPF, TBF
and median �lter can e�ectively suppress the noise and
preserve the edge, but averaging �lter fails to achieve
these. In terms of noise suppression in MAE sense,
TBF performs the best. TPF is close to TBF and sig-
ni�cant better than the other two �lters.



Table 2: MAEs for noisy and enhanced images (Lena)
MAE MAE

Images (Training region) (Whole image)
Noisy 14.0345 13.8716
TPF 4.6703 4.8588
TBF 4.6541 4.8340

Median - 4.8431
Averaging - 7.4885

Table 3: MAEs for noisy and enhanced images (Har-
bor)

MAE MAE
Images (Training region) (Whole image)
Noisy 14.0241 13.9255
TPF 6.8553 7.8670
TBF 6.4705 7.2545

Median - 9.0996
Averaging - 11.8483

5.2. Enhancing Noisy Images

Enhancing images corrupted by mixed noise using TPFs
are simulated in this sub-section. The �rst image is
\Lena" (512 � 512) and the corrupted image is pro-
duced by adding noise given by (8).

The top left quarters of the noise-free \Lena" and
noisy \Lena" are used to estimate the parameters of
TPFs under the MAE criterion. After estimation, the
resulting �lter is applied to the whole noisy image. To
evaluate TPF's performance, the noisy image is also
enhanced by TBF, median and averaging �lter repec-
tively. The windows used in the simulations are all 3�3
square windows. Table 2 shows the MAEs of the noisy
and enhanced images.

The above experiment is repeated with another test
image \Harbor" (512� 512) which contains many �ne
structures. The original, noisy and enhanced images
are shown in Figure 3 and the resulting MAEs are listed
in Table 3.

As shown in the tables, the performance of TPF
is almost the same as that of TBF and median �lter,
and much better than averaging �lter for the image
\Lena". For \Harbor", although TPF is not as e�ective
as TBF, it is still considerably better and much better
than median �lter and averaging �lter respectively.

The visual quality of images enhanced by TPFs is
almost identical to those enhanced by TBFs. Median
�lter performs well for the image \Lena" but relatively

poorly for the image \Harbor". Some �ne structures
in \Harbor" are blurred by median �ltering. Averaging
�lter causes blurring in both cases and the images still
look noisy.

In light of the small di�erences in their MAEs and
visual quality, it can be concluded that the noise sup-
pression capability and detail preserving capability of
TPFs are comparable to those of TBFs.

6. CONCLUSIONS

In this paper, a new type of �lters called threshold
pattern �lters (TPFs) is proposed. TPFs only utilize
the threshold patterns at the levels that are equal to
sample values in the window. The complexity is hence
much reduced as compared with TBFs. TPFs select a
sample in the window such that the objective function
is minimized.

Simulations of using TPFs to enhance mixed-noise
corrupted images are carried out and compared with
TBFs, median �lter and averaging �lter. It is found
that TPFs are e�ective in removing impulse noise and
have comparable performance as TBFs, but at lower
complexity.

There are some issues about TPFs which remain
for further studies. For example, the design method
proposed in this paper is e�cient but not necessarily
optimal. Thus, research is still going on to optimize
TPFs. Analysis of the �lter behaviour is another re-
search area. One way to analyze this type of non-linear
�lter is through breakdown probability, rank-selection
and sample-selection probability [3].
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Figure 3: (a) Original image; (b) noisy image; (c) enhanced by TPF; (d) enhanced by TBF; (e) enhanced by
median �lter; (f) enhanced by averaging �lter.


