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ABSTRACT

This paper addresses the problem of estimating the covariance ma-
trix reliably when the assumptions, such as Gaussianity, on the
probabilistic nature of multichannel data do not necessarily hold.
Multivariate spatial sign and rank functions, which are generaliza-
tions of univariate sign and centered rank, are introduced. Further-
more, spatial rank covariance matrix and spatial Kendall’s tau co-
variance matrix based new robust covariance matrix estimators are
proposed. Efficiency of the estimators is discussed and their quali-
tative robustness is demonstrated using a empirical influence func-
tion concept. The use and reliable performance of the proposed
methods is demonstrated in color image filtering, image analysis,
principal component analysis and blind source separation tasks.

1. INTRODUCTION

A growing number of signal processing applications require pro-
cessing of multichannel data. The application domains include
biomedical signal processing such a EEG, color image processing
and array processing. The components in multichannel signal may
have different scales and they may be correlated. Hence, it is de-
sirable to develop techniques that take into account the correlation
structure and scale. Such techniques typically require the estima-
tion of a covariance matrix. The efficiency of the sample covari-
ance matrix deteriorates drastically if the signal is contaminated
by non-Gaussian noise. In particular, if the data are contaminated
by outliers, poor estimates are obtained. Therefore, there is a need
for techniques that produce nearly optimal results at nominal con-
ditions and reliable estimates if the assumptions on the underlying
signal and noise model are not completely valid.

In this paper, we investigate the problem of robust covariance
estimation. Techniques based on the concepts of multivariate sign
function and rank function are introduced for estimating the co-
variance matrix for the multichannel signal. Let us express ap× p
covariance matrixΣ in terms of its eigenvalue decomposition [2]
Σ = λUCUT where the scalarλp is the generalized variance,
the matrixU contains the eigenvectors and the diagonal matrixC
the standardized eigenvalues such thatdet(C) = 1. The proposed
techniques estimate the covariance matrix in pieces, i.e.,U,C and
λ separately and then construct the complete covariance matrix.
The obtained covariance matrix, its eigenvectorsU , standardized
eigenvaluesC or eigenvaluesΛ = λC may then be used in var-
ious signal processing applications. To illustrate the practical use
of the proposed estimators, we introduce a new algorithm for color
image filtering.

This paper is organized as follows. In section 2, the spatial
rank covariance matrix (RCM) and the spatial Kendall’s tau co-
variance matrix (TCM) are introduced. Methods for constructing
robust covariance matrix estimates using theRCM andTCM are
given. The efficiency properties of the proposed estimates are dis-
cussed and the qualitative robustness of theTCM is demonstrated
using the finite sample influence function concept. Section 3 gives
several signal processing examples where the proposed estimators
are employed. The new algorithm for color image filtering is de-
veloped. The robustness of the covariance estimators is illustrated
by a principal component analysis example and by an image anal-
ysis example where the position and orientation of an object in an
image is determined. In addition, an estimation method based on
theRCM is applied to a whitening transform in a blind source
separation task. Finally, section 4 concludes the paper.

2. SPATIAL RANK COVARIANCE MATRICES

We begin by giving definitions for multivariate spatial sign and
rank concepts used in this article. For ap-variate data setX =
{x1, . . . ,xn}, thespatial rank functionis [9]

R(x) =
1

n

nX
i=1

S(x− xi)

whereS is the spatial sign function

S(x) =

� x
||x|| , x 6= 0

0 x = 0
.

A spatial medianM(X) solvesR(x) = 0 (for the spatial me-
dian see for example [11]). The spatial sign and rank functions
are multivariate generalizations of the univariate sign and centered
rank functions.

In the following we describe how the spatial rank covariance
matrixRCM = n−1P

i R(xi)R(xi)
T and the spatial Kendall’s

tau covariance matrixTCM = n−2P
i,j S(xi−xj)S(xi−xj)

T

can be used in robust covariance matrix estimation. A covariance
matrix Σ can be expressed in terms of its eigenvalue decomposi-
tion as follows

Σ = λUCUT

where the scalarλp is the generalized variance, the orthogonal ma-
trix U contains the eigenvectors andC is the matrix of the stan-
dardized eigenvalues (det(C) = 1). It can be shown [7], that for



so called elliptically symmetric distributions [5] the eigenvectors
of the theoreticalRCM andTCM are the same as the eigenvec-
tors of the ordinary covariance matrix. There is also a one-to-one
correspondence between the standardized eigenvalues of the theo-
reticalTCM and the eigenvalues of the usual covariance matrix.

The estimation strategy using theRCM or TCM may now
be given as follows:

1. Calculate theRCM or TCM of the data. Find the corre-
sponding eigenvector estimates, that is, matrixÛ .

2. Estimate the marginal values (eigenvalues, principal values)
of

ÛTx1, . . . , Û
Txn

using any robust univariate scale estimate. Write
Λ̂ = diag(λ̂1, . . . , λ̂p) for the estimates.

3. The covariance matrix estimate is

Σ̂ = ÛΛ̂ÛT .

As explained in this section, it is also possible to construct
both eigenvector and standardized eigenvalue estimates, sayÛ and
Ĉ, from the spatialTCM . To estimate the scale, use first the
matrix ÛĈÛT to construct robust (squared) Mahalanobis type of
distances from the spatial medianM(X),

di = (xi −M(X))T Û Ĉ−1ÛT (xi −M(X)), i = 1, . . . , n.

The generalized variance (λp) may then be estimated robustly by
hp ×Med(D)p where the correction factorhp can be selected to
guarantee the convergence for the underlying distribution.

Our simulation results [12, 13] show that, in the bivariate nor-
mal case, the efficiencies of the estimates based on the two spatial
rank covariance matrices are quite high (about 90 percent for sam-
ple size 50) as compared to those based on the usual covariance
matrix. For heavy tailed distributions the spatial methods are much
more efficient.
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Figure 1: The empirical influence function plots for the first eigen-
vector of the sample covariance matrix (left) and for the first eigen-
vector of theTCM (right). The influence of an outlier to the
TCM is bounded.

In addition to being highly efficient, the robustness should be
considered. An empirical influence function is a standard tool
for describing the qualitative robustness of an estimator. Roughly
speaking it measures the influence of one additive observation to
the estimator. For a robust estimator the empirical influence func-
tion should naturally be bounded. Figure 1 shows the empirical

Table 1: Average component mean square errors for the filtering
results shown in Figure 2.

Method MSE
VM 99.5
RCM 88.2

influence function plots for the sample covariance matrix and for
theTCM . The effect of one added observation to the direction of
the eigenvector corresponding to the largest eigenvalue of the esti-
mated covariance matrix was measured. For the sample covariance
matrix, the influence of one additional observation is unbounded
whereas the empirical influence function of theTCM is bounded.

3. APPLICATION EXAMPLES

As an example of the use of the spatial rank covariance matrices in
multichannel filtering, theRCM is applied to attenuating noise in
RGB color images. The algorithm employing theRCM proceeds
as follows:

1. In a processing window ofn vectorsX = {x1, . . . ,xn},
estimate the covariance matrix robustly using estimation
strategy described in section 2 (use Median Absolute De-
viation (MAD) to estimate the marginal variances). Write
Σ̂ for the estimated covariance matrix. Find also the spatial
medianM(X) of the data by solving the equationR(x) =
0.

2. Compute the (squared) robust Mahalanobis type of distances

di = (xi −M(X))T Σ̂−1(xi −M(X)) i = 1, . . . , n

and find the medianM(D) of these distances.

3. The output is the half sample mean of the data

T(X) =

Pn
i=1wixiPn
i=1wi

where

wi =

�
1 if di ≤M(D)
0 if di > M(D)

.

The filtering algorithm was applied to a256× 256 RGB color
image using a3× 3 processing window. A test image was created
by adding multivariate Gaussian noise
(σ2

1 = 400, σ2
2 = 225, σ2

3 = 100 andρ = 0.7) to the original
image. Furthermore, 10% of the samples were randomly replaced
by outliers, having the minimum or maximum value. The orig-
inal image, the noisy image and the filtered image are shown in
Figure 2. In quantitative comparison in terms of mean square er-
ror (MSE) criterion, the proposed filtering method outperforms the
Vector Median (VM) [1], see Table 1. It also preserves the edges
and details significantly better than VM as can be seen from Figure
2.

In our second example we consider Discrete Karhunen-Lo`eve
Transform (DKLT) and Principal Component Analysis (PCA)
which are widely used in various signal processing applications.



a) b) c) d)

Figure 2: a) The original Room256 × 256 RGB color image and b) the noisy image where multivariate Gaussian noise with unequal
component variances(σ2

1 = 400, σ2
2 = 225, σ2

3 = 100, ρ = 0.7) is added. Moreover, 10% of the samples are replaced by outliers which
have the minimum or maximum signal value with equal probability. c) The filter output using the vector median algorithm. d) The filter
output using the algorithm employing theRCM .

These techniques employ eigenanalysis of the covariance or au-
tocorrelation matrix. Their applications areas include: data com-
pression, image analysis, pattern recognition, detection, spectrum
estimation and array processing. Due to the large number of ap-
plications, it is of interest to see how the performance of PCA or
DKLT deteriorates in the face of outliers.

Principal component analysis looks for a few linear combi-
nations which can be used to summarize the data, losing in the
process as little information as possible, see [8]. First task in PCA
is to transform the observed data so that the components are un-
correlated and the first principal component explains the largest
possible amount of the information in the data, the second com-
ponent explains the second largest amount of variation of the data
and so on.

Let x be ap-variate random variable with a covariance matrix
Σ = UTΛU where the ordered eigenvaluesλ1 ≥ . . . ≥ λp ≥ 0
of the matrixΣ are on the diagonal of the matrixΛ and the matrix
U is the corresponding eigenvector matrix having the eigenvectors
on the columns. Now the covariance matrix of the transformed
random variable

y = UTx

is Λ so in the theory we know the transform leading to the observa-
tions with properties described above. The amount of the variation
explained by the firstk ≤ p principal components (firstk elements
of the r.v.y) is (λ1 + · · ·+ λk)/(λ1 + · · ·+ λp).

In practice, the matrixU above has to be estimated from the
observations. Usual estimator is the eigenvector matrix of the sam-
ple covariance matrix. This estimators is optimal in the case of
Gaussian distribution but it is well known that it can give very mis-
leading results if the underlying distribution has heavy tails or the
data are contaminated by outliers. In such cases, robust estimators
such as the method proposed in this paper are worth considering.

To demonstrate the difference in the behavior of the conven-
tional sample covariance matrix and robust estimators we gener-
ated a random sample of 100 observations from the 5-variate nor-
mal distribution with the covariance matrix
Σ1 = diag(100, 50, 25, 1, 0.99) and the symmetry center� = 0.
We contaminated the data by adding 5 observations from the nor-
mal distribution with the covariance matrix
Σ2 = diag(100, 50, 25, 1000, 1000) and the symmetry center
� = 0.

The results of the PCA using the conventional sample esti-
mate and the robust estimate for covariance matrix are reported in

Table 2 for the original and contaminated data. Robust estimate
for the covariance matrix was produced using theRCM and the
technique described in the section 2. For simplicity we have only
considered in our results the standard deviation of the principal
components and the amount of the total variation explained by the
k ≤ p first principal components. The results show that only 5 out-
lying observations add an irrelevant dimension to the data when we
use the estimate based on the normal distribution theory. On the
other hand, outlying observations do not have any significant influ-
ence to the PCA based on the robust estimator. From this simple
example it is easy to see that if the assumption of the Gaussianity
is not necessarily true, the normal theory based PCA and the sig-
nal processing methods based on it may give strongly misleading
results. Therefore, robust covariance matrix estimators should be
considered.

The deteriorating influence of outliers to the sample estimates
may be qualitatively demonstrated by using a simple image anal-
ysis example. The task at hand is to determine the position and
orientation of an aircraft in an image. The aircraft is segmented
from the background using simple thresholding method. As a re-
sult, there remains a few outlying points that are not from the sur-
face of the airplane. After segmenting the airplane from the back-
ground we have just a two dimensional data set of pixel coordi-
nates. Therefore the center and the orientation of the airplane can
be determined using any estimates for the two dimensional loca-
tion and scatter (orientation is obtained from the ordered eigenvec-
tors of an estimated covariance matrix).

In Figure 3 we have illustrated the results using the sample
estimates and the robust estimates by drawing the tolerance el-
lipses obtained from the sample covariance matrix and from the
TCM . Ellipses are located at the estimates of the center: the
sample mean vector and the spatial median. The direction of the
first main axis of the tolerance ellipse gives the estimated main
direction of the object. The outlying points influence the sample
estimates severely so that the position and the orientation are ob-
tained incorrectly whereas the robust estimates give us much more
reliable results.

In our third example we consider the whitening transform in
the blind source separation problem. In multichannel signals, data
vector component variances are often unequal and components are
often correlated. In many applications there is a need to decorre-
late the observed signal components and perform normalization by
making the component variances equal. Such operation is called



Table 2: Results from the PCA using the conventional and robust covariance matrix estimator. The results for the corrupted data are printed
in bold.

Criterion Method Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
9.48 6.69 4.50 1.04 0.93

Standard
Conventional

9.77 7.92 6.73 5.65 4.47
deviation 10.85 6.62 4.91 1.02 0.81Robust

10.93 6.37 5.30 1.21 0.79
0.57 0.86 0.99 0.99 1.00

Cumulative
Conventional

0.37 0.62 0.80 0.92 1.00
Proportion 0.63 0.86 0.99 1.00 1.00Robust

0.63 0.84 0.99 1.00 1.00
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Figure 3: The pixel coordinates, the estimates for the center and
the 50% tolerance ellipses obtained from the sample covariance
matrix and theTCM .

the whitening transform. Whitening transformation is often as-
sumed to be performed before applying any estimator to multi-
channel signals.

The theoretical basis for the whitening transform is very simi-
lar to the theory reviewed in the principal component analysis ex-
ample. Let againx be ap-variate random variable with covariance
matrixΣ = UTΛU where matricesU andΛ are as before. Let the
transform matrixV be given in terms of eigenvalues and eigenvec-
tors of the covariance matrix as follows

V = Λ−1/2UT .

The covariance matrix of the transformed random variable

y = V x

is an identity matrixIp so, again, in theory we know the transfor-
mation leading to the desired properties of the marginal variables.
If the sample covariance matrix is used for whitening, very unre-
liable results can be obtained in the face of outliers. Therefore,
robust covariance estimators should be considered.

In Blind Source Separation (BSS) problem, one has a collec-
tion of sensors such as microphones that observe a linear com-
bination of source signals such as speech of individual speakers.
The task is then to separate the source signals (voices of individual
speakers) from each other. The separation is achieved by finding
statistically independent components from these linear mixtures,
see [4, 10]. The term blind refers to the fact that we have no
prior information about the structure of the mixing system and the
source signals are unknown as well.

The unobservable source signals and the observed mixtures
are related by

yk = Ask + vk

whereA is ann ×m matrix of unknown constant mixing coeffi-
cients,n ≥ m, s is a column vector ofm source signals,y is a
column vector ofn mixtures andv is an additive noise vector and
k is a time index. The matrixA is assumed to be of full rank and
source signals are typically assumed to be zero mean, stationary
and non-Gaussian.

The separation task at hand is to estimate the elements of a sep-
arating matrix denoted byH so that the original sources are recov-
ered from the noisy mixtures. As a preprocessing step the observed
datay are centered at the origin and decorrelated by the whitening
transform. Whitening allows for solving the separation problem
more easily. Uncorrelated components with varianceσ2 = 1 are
used as an input to the actual separation. By projecting the ob-
served data into subspace spanned by eigenvectors corresponding
tom largest eigenvalues, we will haven = m and the separating
matrix will be orthogonal (H−1 = HT ). The projection into sig-
nal subspace will attenuate some noise as well. An estimatex of
unknown sourcess is given by

ŝ = x = ĤTy.

The estimate can be obtained only up to a permutation ofs, i.e.,
the order of the sources may change. A solution may be obtained,
for example, by using higher order cumulants [4].

An example of the separation is depicted in Figure 4. In our
simulation, 5 source signals and 7 mixtures with randomly gen-
erated coefficient matrixA were used. The observed mixture se-
quences of 500 observations are contaminated with zero mean ad-
ditive Gaussian (Normal) noise with varianceσ2 = 0.1. More-
over, 5% of the observations are randomly replaced by outliers
with large amplitude. The actual separation is performed using
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Figure 4: An example of the BSS from noisy sequences: a) Noise
free source signals, b) the noisy mixtures, c) separation result us-
ing robust centering and whitening, d) separation result using cen-
tering and whitening based on the sample mean and the sample
covariance matrix.

a least squares algorithm, see [6] for details. Separation is pre-
ceded by robust centering and whitening which allow for perform-
ing the separation reliably whereas centering and whitening using
the sample mean and the sample covariance matrix followed by
the same separation method produce incomprehensible results.

The robust estimates were obtained using the spatial median
and the robust covariance matrix estimation based on theRCM .
Marginal variances were estimated using the MAD. Because the
marginal distributions in this example are strongly non-Gaussian
(we do not know the right consistency correction factor for the
MAD), we obtained our final estimates in a following way:

1. We computed the weightswi based on robust mahalanobis
distances

di = (xi −M(X))T Σ̂−1
0 (xi −M(X))

where M(X) is the spatial median of the data
X = {x1, . . . ,xn} and Σ̂0 is the covariance matrix es-
timate obtained using theRCM and the MAD:s for the
marginal variances. We used a redescending weight func-
tion giving a zero weight for the observations with suffi-
ciently largedi (see [3]).

2. The final estimates were the weighted mean and covariance
matrix

T(X) =

Pn
i=1wixiPn
i=1wi

and

Σ̂ =

Pn
i=1wi(xi −T(X))(xi −T(X))TPn

i=1wi − 1
.

The final step given above is called one step reweighting and it is
a standard procedure in robust covariance matrix estimation.

4. CONCLUSION

The main purpose of this paper was to introduce the concepts of
spatial sign and rank and demonstrate their use in different mul-
tichannel signal processing tasks. Robust covariance matrix es-
timates obtained from the spatial rank covariance matrix and the
spatial Kendall’s tau covariance matrix were used in RGB color
image filtering, principal component analysis, discrete Karhunen
Loève Transform and Blind source separation problem. In addi-
tion, we showed how the methods based on the sample covariance
matrix give strongly misleading results in the face of outliers.

At the end it seems worth mentioning that the robust covari-
ance matrix estimation methods introduced in this paper are easy
to implement and have relatively low computational complexity.
Future work extends the use of spatial sign and rank concepts to
the autocorrelation/autocovariance matrix estimation.
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