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ABSTRACT

Surveillance radars used at sea need to suppress the signal
received back from the sea surface, in order to improve the
probability of detecting target signals. This paper invest-
igates whether nonlinear predictor networks can be used to
improve the suppression of sea clutter, and thus to improve
the performance of maritime surveillance radar detectors.

1. INTRODUCTION

The performance of surveillance radars used in marine en-
vironments is limited by sea clutter, the undesirable, but un-
avoidable radar returns from the sea surface. The suppres-
sion of this clutter is necessary in order to improve the target
detection capability of maritime surveillance radars.

The traditional approach used to design detectors for use
in sea clutter has been to use a stochastic process to model
sea clutter. Evidence has suggested that the stochastic pro-
cess which best models sea clutter is the compound K-
distribution, [1]. The sea clutter model is then used to
choose the threshold for the radar detector, [2]. In practice,
the type of radar detection technique most often applied is
some form of the constant false alarm rate (CFAR) detector
[3–6].

Recently, an argument has been put forward, which sug-
gests that sea clutter is not in fact a stochastic process, but
rather, it is a chaotic process [7–10]. If sea clutter is chaotic,
then a nonlinear detector will exploit this property. If it
is not, a nonlinear detector may exploit the non-Gaussian
nature of high resolution sea clutter. The purpose of this
paper is to investigate whether nonlinear predictor networks
can be used to improve high resolution radar target detection
at sea, using the sea clutter data sets listed in Table 1.

2. SEA CLUTTER DATA

Sea clutter data sets have been collected using stationary,
land-based radars that operate in a dwelling mode, that is,
with the antenna pointing towards a patch of the sea surface

This work was supported by Marconi Avionics, DERA, and EPSRC.

Name Frequency Description
Wavetank 15.75GHz Data collected for a range of

controlled windspeeds corresponding
to sea states from 2 to 6. Horizontal
polarisation, pulse repetition
frequency of 1kHz.

Dawber-H 3GHz Data collected during a sea
state of 7. Horizontal polarisation,
pulse repetition frequency of 20kHz.

Dawber-V 3GHz Data collected during a sea state of 6.
Vertical polarisation, pulse
repetition frequency of 20kHz.

Table 1: Sea clutter data

along a fixed direction. Table 1 summarises the clutter data
analysed for this paper.

3. PREDICTION

The radial basis function (RBF) network and the Volterra
series network have been chosen to implement the nonlinear
predictors. These networks are briefly discussed below.

3.1. Prediction problem

In its simplest form, a prediction problem is based on a time
seriesfx(n)g. Given an embedding vectorx(n), which
contains N consecutive samples of the time series, i.e. :

x(n) = [x(n); x(n� 1); :::; x(n�N + 1)]T

This is used to form an estimatêx(n + 1) of the next data
sample,x(n + 1), by constructing a predictor functionf(),
where

x̂(n+ 1) = f(x(n))



3.2. RBF predictor

An RBF network can be used to find the predictor func-
tion discussed above. The structure of the RBF predictor is
shown in Figure 1. It consists ofN source nodes,M centres
(or hidden units), andM weights.
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Figure 1: RBF network

The RBF predictor function is given by, (1), below:

f(x(n)) =
MX
i=1

wi�(kx(n) � cik) (1)

whereM is the number of centres,�() is some non-linear
function,k:k is a distance measure,ci is the position of the
ith centre inN -dimensional space, andwi is the weight at
the output of theith centre.

The nonlinear function chosen for this work was the
Gaussian function, which is symbolised in Figure 1 by the
bell-shaped curves in the hidden layer. Normalised, [11],
as well as un-normalised Gaussian kernels have been used.
The distance measure used was the Euclidean distance.

3.3. Volterra series predictor

The truncated Volterra series, (2), can also be used to find
the predictor function discussed above.

y(n) =
N�1X
m1=0

h1(m1)x(n�m1) (2)

+
N�1X
m1=0

N�1X
m2=m1

h2(m1;m2)x(n�m1)x(n�m2) + :::

+
N�1X
m1=0

� � �
N�1X

mP=m1

h2(m1;m2; :::;mP)

�x(n�m1):::x(n�mP )

The truncated Volterra series expansion is given above, for a
zero mean process.N is the embedding dimension,P is the
order of the Volterra series, andh(:) is known as a Volterra
kernel.

3.4. Nonlinear network parameters

The weights for the linear and RBF predictors, and the Vol-
terra kernels were all trained using the numerically robust
Householder transform, [12]. The RBF centres were selec-
ted using a random subset of the training data.

4. DETECTION STRATEGIES

A standard fixed threshold detector and a linear predictor-
detector have been used to compare the performance of the
nonlinear predictor-detectors.

4.1. False alarm rate

A false alarm refers to noise or clutter crossing the de-
tector threshold level, and being mistaken for a target sig-
nal. In practice, radar detectors are designed by choosing
an acceptable false alarm rate (FAR), and then setting the
threshold level of the detector for this FAR.

4.2. Fixed threshold detector

A threshold was set for this detector using a small set of
clutter-only data, to form a clutter amplitude histogram.
The histogram was used to determine a threshold level that
would result in a tolerable number of false alarms. This
threshold level was then fixed and radar data, other than that
used to form the histogram, was used to judge the perform-
ance of the detector.

4.3. Predictor-detectors

A block diagram of the general structure of the predictor-
detectors is given below. The predictor (linear, RBF, or Vol-
terra series) section was trained using a small set of clutter-
only data. After training, the free parameters of the pre-
dictor were fixed. Another small set of clutter-only data
was then passed through the predictor, and the errors pro-
duced were used to set an error threshold for a desired FAR.
Radar data previously unseen by the detector was then used
to assess the predictor-detector’s performance. The idea is
that during training the predictor should learn to recognise
the clutter. Therefore, if clutter-only data is present at the
input, the predictor will produce a small error. If a target as
well as clutter is present at the input, then the predictor will
produce a large error.
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Figure 2: Predictor-detector structure

5. RESULTS

Prediction and detection results are presented for the sea
clutter data listed in Table 1. To obtain the predictor and
predictor-detector results, in sections 5.1 and 5.2, one step-
ahead predictors were used on clutter amplitude data.

5.1. Prediction results

Prediction results were obtained using 6000 samples to
train the predictor’s weights, then a further 6000 samples
were used to obtain the normalised mean square error
(NMSE) results:

NMSE=10 log
10

�
1

�2yN

PN

k=1(y(k) � ŷ(k))2
�

wherey(k) is the actual sample,̂y(k) is the predictor’s es-
timate ofy(k), and�2y is the variance ofy over the test dur-
ation,N .

5.1.1. Prediction results for Wavetank data

As listed in Table 1, Wavetank data was recorded for a range
of controlled windspeeds. This data was collected using ho-
rizontal polarisation both on transmit and receive. Some
results for this data are reported below.
Figure 3 shows results for a linear predictor with a range
of tap lengths. Figure 3 also shows results for an RBF pre-
dictor with normalised Gaussian kernels, and an embedding
dimension of 10. The number of centres used in the RBF
predictor was varied from 10 to 400. Figure 4 shows results
for a cubic Volterra series predictor, for a range of embed-
ding dimensions.

Both Figure 3 and Figure 4 show that the clutter data set
recorded during a windspeed of 4m/s is barely predictable.
The 11m/s and 12m/s data sets are more predictable than
the 4m/s data set. In common with this increase in predict-
ability, the authors noticed an increase in the “spikyness”
of the clutter received by the radar, as the windspeed was
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Figure 3: RBF and Linear prediction of Wavetank data
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Figure 4: Volterra series prediction of Wavetank data

increased. Figures 3 and 4 show that the performance of
the linear predictor is at least as good as the performance
of the nonlinear predictors. These results suggest that the
predictor function of the Wavetank data is linear.

5.1.2. Prediction results for sea data

Results presented here are for those data sets listed in Table
1, other than the Wavetank data. Figure 5 shows linear
and RBF prediction results. The RBF embedding dimen-
sion was 5, and normalised Gaussian kernels were used.
Figure 6 shows results for a cubic Volterra series predictor.
As seen for the Wavetank data in Figure 3 and Figure 4,
the linear predictor works at least as well as the nonlinear
predictors, suggesting that the predictor function for these
clutter data sets is also linear. Interestingly, the Dawber
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Figure 5: RBF and Linear prediction of sea data
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Figure 6: Volterra series prediction of sea data

data which was collected using vertical (Dawber-V) polar-
isation (on transmit and receive) is more predictable than
that collected using horizontal (Dawber-H) polarisation (on
transmit and receive), despite the fact that the data collected
using horizontal polarisation was collected during a higher
(windspeed) sea state. The horizontally polarised Dawber
data was recorded during a windspeed of 15.4m/s, whilst
the vertically polarised Dawber data was collected during a
windspeed of 12.8m/s. All reported parameters, apart from
windspeed and polarisation, were approximately the same
for both Dawber data sets.

5.2. Detection results

Figure 7 and Figure 8 below show receiver operating curves
(ROC’s) for the 12m/s and 4m/s Wavetank data sets, re-

spectively. In each case a Swerling, [2], (fluctuating
Rayleigh) target was used, and the signal to clutter ratio
was set to 0.2dB. In both plots an embedding dimension of
10 was used for both the Volterra, and the linear predictor-
detector. A set of 6000 samples was used to set the threshold
level for the fixed threshold detector.
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Figure 7: Detection of 12m/s Wavetank data
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Figure 8: Detection of 4m/s Wavetank data

The results in Figure 7 and Figure 8 reinforce the predic-
tion results in Figure 3 and Figure 4, which suggest that
the predictor function for the Wavetank data is linear. It
is observed that the detection performance of the linear
predictor-detector is very similar to that of the nonlinear
predictor-detector. The predictor-detectors perform more
poorly than the fixed threshold level detector on the barely
predictable 4m/s Wavetank data. However, on the more pre-



dictable 12m/s data, the predictor-detectors performed bet-
ter than the fixed threshold detector, for low probabilities of
false alarm.

6. CONCLUSIONS

The predictor-detectors have been shown to perform bet-
ter than a fixed threshold detector in predictable clutter.
However, the results which have been presented suggest
that the clutter data sets analysed for this paper have lin-
ear, rather than nonlinear, predictor functions. Therefore,
the nonlinear predictor-detectors provide no additional per-
formance benefits with respect to those obtained using a lin-
ear predictor-detector.

The effect of windspeed on sea clutter predictability has
also been investigated. Data sets recorded during higher
windspeed conditions appear to result in more predictable
clutter, given that all other parameters remain constant, such
as radar polarisation.
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